419 research outputs found

    Three-color dSTORM Imaging and Analysis of Recombination Foci in Mouse Spread Meiotic Nuclei

    Get PDF
    During the first meiotic prophase in mouse, repair of SPO11-induced DNA double-strand breaks (DSBs), facilitating homologous chromosome synapsis, is essential to successfully complete the first meiotic cell division. Recombinases RAD51 and DMC1 play an important role in homology search, but their mechanistic contribution to this process is not fully understood. Super-resolution, single-molecule imaging of RAD51 and DMC1 provides detailed information on recombinase accumulation on DSBs during meiotic prophase. Here, we present a detailed protocol of recombination foci analysis of three-color direct stochastic optical reconstruction microscopy (dSTORM) imaging of SYCP3, RAD51, and DMC1, fluorescently labeled by antibody staining in mouse spermatocytes. This protocol consists of sample preparation, data acquisition, pre-processing, and data analysis. The sample preparation procedure includes an updated version of the nuclear spreading of mouse testicular cells, followed by immunocytochemistry and the preparation steps for dSTORM imaging. Data acquisition consists of three-color dSTORM imaging, which is extensively described. The pre-processing that converts fluorescent signals to localization data also includes channel alignment and image reconstruction, after which regions of interest (ROIs) are identified based on RAD51 and/or DMC1 localization patterns. The data analysis steps then require processing of the fluorescent signal localization within these ROIs into discrete nanofoci, which can be further analyzed. This multistep approach enables the systematic investigation of spatial distributions of proteins associated with individual DSB sites and can be easily adapted for analyses of other foci-forming proteins. All computational scripts and software are freely accessible, making them available to a broad audience.</p

    Developing a personalized remote patient monitoring algorithm: a proof-of-concept in heart failure

    Get PDF
    Aims Non-invasive remote patient monitoring is an increasingly popular technique to aid clinicians in the early detection of worsening heart failure (HF) alongside regular follow-ups. However, previous studies have shown mixed results in the performance of such systems. Therefore, we developed and evaluated a personalized monitoring algorithm aimed at increasing positive-predictive-value (PPV) (i.e. alarm quality) and compared performance with simple rule-of-thumb and moving average convergence-divergence algorithms (MACD). Methods and results In this proof-of-concept study, the developed algorithm was applied to retrospective data of daily bodyweight, heart rate, and systolic blood pressure of 74 HF-patients with a median observation period of 327 days (IQR: 183 days), during which 31 patients experienced 64 clinical worsening HF episodes. The algorithm combined information on both the monitored patients and a group of stable HF patients, and is increasingly personalized over time, using linear mixed-effect modelling and statistical process control charts. Optimized on alarm quality, heart rate showed the highest PPV (Personalized: 92%, MACD: 2%, Rule-of-thumb: 7%) with an F1 score of (Personalized: 28%, MACD: 6%, Rule-of-thumb: 8%). Bodyweight demonstrated the lowest PPV (Personalized: 16%, MACD: 0%, Rule-of-thumb: 6%) and F1 score (Personalized: 10%, MACD: 3%, Rule-of-thumb: 7%) overall compared methods. Conclusion The personalized algorithm with flexible patient-tailored thresholds led to higher PPV, and performance was more sensitive compared to common simple monitoring methods (rule-of-thumb and MACD). However, many episodes of worsening HF remained undetected. Heart rate and systolic blood pressure monitoring outperformed bodyweight in predicting worsening HF. The algorithm source code is publicly available for future validation and improvement

    Shaping the Gut Microbiota by Breastfeeding: The Gateway to Allergy Prevention?

    Get PDF
    Evidence is accumulating that demonstrates the importance of the gut microbiota in health and diseases such as allergy. Recent studies emphasize the importance of the “window of opportunity” in early life, during which interventions altering the gut microbiota induce long-term effects. The neonate's gut microbiota composition and metabolism could therefore play an essential role in allergic disease risk. Breastfeeding shapes the gut microbiota in early life, both directly by exposure of the neonate to the milk microbiota and indirectly, via maternal milk factors that affect bacterial growth and metabolism such as human milk oligosaccharides, secretory IgA, and anti-microbial factors. The potential of breastmilk to modulate the offspring's early gut microbiota is a promising tool for allergy prevention. Here, we will review the existing evidence demonstrating the impact of breastfeeding on shaping the neonate's gut microbiota and highlight the potential of this strategy for allergy prevention

    Centre-specific bacterial pathogen typing affects infection-control decision making

    Get PDF
    Whole-genome sequencing is becoming the de facto standard for bacterial outbreak surveillance and infection prevention. This is accompanied by a variety of bioinformatic tools and needs bioinformatics expertise for implementation. However, little is known about the concordance of reported outbreaks when using different bioinformatic workflows. In this multi-centre proficiency testing among 13 major Dutch healthcare-affiliated centres, bacterial whole-genome outbreak analysis was assessed. Centres who participated obtained two randomized bacterial datasets of Illumina sequences, a Klebsiella pneumoniae and a Vancomycin-resistant Enterococcus faecium, and were asked to apply their bioinformatic workflows. Centres reported back on antimicrobial resistance, multi-locus sequence typing (MLST), and outbreak clusters. The reported clusters were analysed using a method to compare landscapes of phylogenetic trees and calculating Kendall–Colijn distances. Furthermore, fasta files were analysed by state-of-the-art single nucleotide polymorphism (SNP) analysis to mitigate the differences introduced by each centre and determine standardized SNP cut-offs. Thirteen centres participated in this study. The reported outbreak clusters revealed discrepancies between centres, even when almost identical bioinformatic workflows were used. Due to stringent filtering, some centres failed to detect extended-spectrum beta-lactamase genes and MLST loci. Applying a standardized method to determine outbreak clusters on the reported de novo assemblies, did not result in uniformity of outbreak-cluster composition among centres

    Combining transplant professional's psychosocial donor evaluation and donor self-report measures to optimise the prediction of HRQoL after kidney donation:an observational prospective multicentre study

    Get PDF
    OBJECTIVES: Living donor kidney transplantation is currently the preferred treatment for patients with end-stage renal disease. The psychosocial evaluation of kidney donor candidates relies mostly on the clinical viewpoint of transplant professionals because evidence-based guidelines for psychosocial donor eligibility are currently lacking. However, the accuracy of these clinical risk judgements and the potential added value of a systematic self-reported screening procedure are as yet unknown. The current study examined the effectiveness of the psychosocial evaluation by transplant professionals and the potential value of donor self-report measures in optimising the donor evaluation. Based on the stress-vulnerability model, the predictive value of predonation, intradonation and postdonation factors to impaired longer term health-related quality of life (HRQoL) of kidney donors was studied. DESIGN: An observational prospective multicentre study. SETTING: Seven Dutch transplantation centres. PARTICIPANTS: 588 potential donors participated, of whom 361 donated. Complete prospective data of 230 donors were available. Also, 1048 risk estimation questionnaires were completed by healthcare professionals. METHODS: Transplant professionals (nephrologists, coordinating nurses, social workers and psychologists) filled in risk estimation questionnaires on kidney donor candidates. Furthermore, 230 kidney donors completed questionnaires (eg, on HRQoL) before and 6 and 12 months after donation. PRIMARY AND SECONDARY OUTCOME MEASURES: HRQoL, demographic and preoperative, intraoperative and postoperative health characteristics, perceived support, donor cognitions, recipient functioning and professionals risk estimation questionnaires. RESULTS: On top of other predictors, such as the transplant professionals’ risk assessments, donor self-report measures significantly predicted impaired longer term HRQoL after donation, particularly by poorer predonation physical (17%–28% explained variance) and psychological functioning (23%). CONCLUSIONS: The current study endorses the effectiveness of the psychosocial donor evaluation by professionals and the additional value of donor self-report measures in optimising the psychosocial evaluation. Consequently, systematic screening of donors based on the most prominent risk factors provide ground for tailored interventions for donors at risk

    Critical Fields of the "Heavy-Fermion" Superconductor CeCu2Si2

    Get PDF
    FWN – Publicaties zonder aanstelling Universiteit Leide

    Circulating T cells in sarcoidosis have an aberrantly activated phenotype that correlates with disease outcome

    Get PDF
    Rationale: Disease course in sarcoidosis is highly variable. Bronchoalveolar lavage fluid and mediastinal lymph nodes show accumulation of activated T cells with a T-helper (Th)17.1 signature, which correlates with non-resolving sarcoidosis. We hypothesize that the peripheral blood (PB) T cell phenotype may correlate with outcome. Objectives: To compare frequencies, phenotypes and function of circulating T cell populations in sarcoidosis patients with healthy controls (HCs) and correlate these parameters with outcome. Methods: We used multi-color flow cytometry to quantify activation marker expression on PB T cell subsets in treatment-naïve patients and HCs. The disease course was determined after 2-year follow-up. Cytokine production was measured after T cell stimulation in vitro. Measurements and main results: We observed significant differences between patients and HCs in several T cell populations, including CD8+ and CD4+ T cells, Th1/Th17 subsets, CD4+ T memory stem cells, regulatory T cells (Tregs) and γδ T cells. Decreased frequencies of CD4+ T cells and increased frequencies of Tregs and CD8+ γδ T cells correlated with worse outcome. Naïve CD4+ T cells displayed an activated phenotype with increased CD25 expression in patients with active chronic disease at 2-year follow-up. A distinctive Treg phenotype with increased expression of CD25, CTLA4, CD69, PD-1 and CD95 correlated with chronic sarcoidosis. Upon stimulation, both naïve and memory T cells displayed a different cytokine profile in sarcoidosis compared to HCs. Conclusions: Circulating T cell subpopulations of sarcoidosis patients display phenotypic abnormalities that correlate with disease outcome, supporting a critical role of aberrant T cell activation in sarcoidosis pathogenesis.</p

    Synchronicity and rhythmicity of purkinje cell firing during generalized spike-and-wave discharges in a natural mouse model of absence epilepsy

    Get PDF
    Absence epilepsy is characterized by the occurrence of generalized spike and wave discharges (GSWDs) in electrocorticographical (ECoG) recordings representing oscillatory activity in thalamocortical networks. The oscillatory nature of GSWDs has been shown to be reflected in the simple spike activity of cerebellar Purkinje cells and in the activity of their target neurons in the cerebellar nuclei, but it is unclear to what extent complex spike activity is implicated in generalized epilepsy. Purkinje cell complex spike firing is elicited by climbing fiber activation and reflects action potential firing in the inferior olive. Here, we investigated to what extent modulation of complex spike firing is reflected in the temporal patterns of seizures. Extracellular single-unit recordings in awake, headrestrained homozygous tottering mice, which suffer from a mutation in the voltage-gated CaV2.1 calcium channel, revealed that a substantial proportion of Purkinje cells (26%) showed increased complex spike activity and rhythmicity during GSWDs. Moreover, Purkinje cells, recorded either electrophysiologically or by using Ca2+-imaging, showed a significant increase in complex spike synchronicity for both adjacent and remote Purkinje cells during ictal events. These seizure-related changes in firing frequency, rhythmicity and synchronicity were most prominent in the lateral cerebellum, a region known to receive cerebral input via the inferior olive. These data indicate profound and widespread changes in olivary firing that are most likely induced by seizure-related activity changes in the thalamocortical network, thereby highlighting the possibility that olivary neurons can compensate for pathological brain-state changes by dampening oscillations
    • …
    corecore