10 research outputs found

    Fulvic acid as water additive in aquaculture

    Get PDF
    Aquakultur ist essentiell um den heutigen Bedarf an Fisch als Nahrungsmittel zu decken. Einsatz von Antibiotika und Kontaminationen mit Schadstoffen in der Vergangenheit haben das Vertrauen von Verbrauchern in Fischprodukte aus Aquakulturproduktion massiv geschwächt. Zeitgleich sind die Ansprüche der Verbraucher an Qualität, Frische und Sicherheit von Lebensmitteln, aber auch das Bewusstsein, negative Auswirkungen der Lebensmittelproduktion auf die Umwelt zu minimieren, erheblich gestiegen. In der Dissertation wurde der Einsatz einer natürlichen organischen Substanz (Fulvosäure) auf die Fischgesundheit und das Immunsystem untersucht. Dabei wurde gezeigt, dass die Zugabe zum Haltungswasser bei Salmoniden und Cypriniden zu verbesserter Stressresistenz und einer Anregung des Immunsystems führte. Dies hilft den Tieren sich auf natürliche Weise gegen Krankheitserreger zu verteidigen, reduziert den Einsatz umweltschädlicher Therapeutika und steigert gleichzeitig das Tierwohl. Weiterhin führte der Zusatz der Fulvosäure zu einer signifikanten Verbesserung der Futterumsatzrate, was sich ebenfalls in gesteigertem Wachstum der Tiere widerspiegelte. Huminstoffe, zu denen die Fulvosäure zählt, sind natürlicher Bestandteil aller aquatischen Ökosysteme. Die Zugabe zum Haltungswasser stellt daher nicht nur eine umweltfreundliche, sondern auch die ursprüngliche Expositionsroute mit diesen Immunstimulanzien für aquatischen Lebewesen dar. Weiterhin besteht mit diesem innovativen Ansatz erstmals die Option die extrem empfindlichen Embryo- und Larvenstadien ohne Zusatz von Antibiotika vor Krankheiten zu schützen. Zeitgleich wird der Metabolismus stimuliert und die Larven im Schlupf und Wachstum unterstützt. Da die Sterblichkeit in diesen Stadien bei über 80 % liegen kann, eröffnen die Ergebnisse der Dissertation ein immenses Potenzial den Tierschutz zu verbessern, und sowohl die Nachhaltigkeit als auch gesellschaftliche Akzeptanz und Konkurrenzfähigkeit der Aquakultur zu steigern.Aquaculture has become imperative to cover the dietary demand for fish as food. The use of antibiotics and contaminations with harmful substances in the past have caused a lot of prejudices for fish products from aquaculture production. At the same time, consumer standards for quality, freshness and safety of food, as well as the awareness to minimize negative impacts of food production on the environment, have increased significantly. In the dissertation, the use of a natural organic substance (fulvic acid) on the health and immune system of fish was determined. Supplementing the water resulted in improved stress resistance and a stimulation of the immune system in salmonids and cyprinids. This helps the animals to defend themselves against pathogens in a natural way, thereby reduces the use of environmentally harmful therapeutics and at the same time increases animal welfare. Furthermore, the addition of fulvic acid led to a significant improvement in feed conversion rate, which was also reflected in increased growth of the animals. Humic substances, which include fulvic acid, are a natural component of all aquatic ecosystems. Therefore, the addition to the holding water represents not only an environmentally friendly but also the original route of exposure to these immunostimulants for aquatic organisms. Furthermore, this innovative approach provides for the first time the option to protect the extremely sensitive embryo and larval stages from disease without the need of antibiotics. At the same time, the metabolism is stimulated and larvae are supported in hatching and growth. Since the mortality in these stages can be more than 80 %, the results of the dissertation show an immense potential to improve animal welfare and to increase sustainability as well as social acceptance and competitiv

    Biochar Extracts Can Modulate the Toxicity of Persistent Free Radicals in the Nematode Caenorhabditis elegans

    Get PDF
    As an effective soil amendment, biochars require a comprehensive ecological evaluation before they can be widely used in agriculture because endogenous contaminants, such as environmentally persistent free radicals (EPFRs), certainly pose an ecological risk to soil invertebrates. In this study, Caenorhabditis elegans (C. elegans) was used as a model organism to investigate the neurotoxicity of two rice straw biochars pyrolyzed at 500 and 700 °C. After 24 h exposure to unwashed biochar, washed biochar, and leaching fluids (supernatants), the neurobehavioral parameters of C. elegans were determined in a liquid toxicity test. The results showed that the washed 700 °C biochar particles significantly impaired locomotion and prolonged the defecation interval at a biochar concentration of 4 g·well−1, while the unwashed biochar and supernatants caused no apparent impairment. Supporting this, electron paramagnetic resonance (EPR) results showed that the intensity of EPFRs in unwashed 700 °C biochar was stronger than that of the corresponding washed particles. This indicates that, in the liquid test, the EPR signal alone is not indicative of particle toxicity. The accessibility and activity of the EPFRs should be considered. Dissolved organic matter (DOM) was observed in the leaching fluids. The neurotoxic activity of the washed biochar was alleviated after the re-addition of leaching fluids to the washed biochar, suggesting that the dissolved organic materials modulate the reactivity of the EPFRs in the liquid phase. This study suggests that the leaching process may increase the risk of biochar when used in the field environment.National Natural Scientific Foundation of ChinaYunnan Province Basic Research ProjectNSFC-NCNPeer Reviewe

    Phenol-rich fulvic acid as a water additive enhances growth, reduces stress, and stimulates the immune system of fish in aquaculture

    Get PDF
    Aquaculture has become imperative to cover the demands for dietary animal protein. Simultaneously, it has to overcome prejudices from excessive use of antibiotics and environmental impacts. Natural supplements are traditionally applied orally. In this study, we demonstrated another pathway: the gills. Humic substances are immunostimulants and a natural part of every aquatic ecosystem, making them ideal to be used as bath stimulants. Five and 50 mg C/L of a fulvic acid-rich humic substance was added for 28 days to the water of juvenile rainbow trout (Oncorhynchus mykiss). This fulvic acid is characterized by a high content of phenolic moieties with persistent free radicals and a high electron exchange capacity. The high concentration of the fulvic acid significantly increased growth and reduced the food conversion ratio and the response to a handling-stressor. Phagocytosis and potential killing activity of head kidney leukocytes were increased, as well as the total oxyradical scavenging capacity (TOSC) and lysozyme activity in the gills. In conclusion, immunostimulation via gills is possible with our fulvic acid, and the high phenolic content improved overall health and stress resistance of fish.Bundesministerium für Wirtschaft und Energie http://dx.doi.org/10.13039/501100006360Projekt DEALPeer Reviewe

    Natural Marine and Synthetic Xenobiotics Get on Nematode’s Nerves: Neuro-Stimulating and Neurotoxic Findings in Caenorhabditis elegans

    No full text
    Marine algae release a plethora of organic halogenated compounds, many of them with unknown ecological impact if environmentally realistic concentrations are applied. One major compound is dibromoacetic acid (DBAA) which was tested for neurotoxicity in the invertebrate model organism Caenorhabditis elegans (C. elegans). This natural compound was compared with the widespread synthetic xenobiotic tetrabromobisphenol-A (TBBP-A) found in marine sediments and mussels. We found a neuro-stimulating effect for DBAA; this is contradictory to existing toxicological reports of mammals that applied comparatively high dosages. For TBBP-A, we found a hormetic concentration-effect relationship. As chemicals rarely occur isolated in the environment, a combination of both organobromines was also examined. Surprisingly, the presence of DBAA increased the toxicity of TBBP-A. Our results demonstrated that organohalogens have the potential to affect single organisms especially by altering the neurological processes, even with promoting effects on exposed organisms

    Natural Marine and Synthetic Xenobiotics Get on Nematode’s Nerves: Neuro-Stimulating and Neurotoxic Findings in Caenorhabditis elegans

    No full text
    Marine algae release a plethora of organic halogenated compounds, many of them with unknown ecological impact if environmentally realistic concentrations are applied. One major compound is dibromoacetic acid (DBAA) which was tested for neurotoxicity in the invertebrate model organism Caenorhabditis elegans (C. elegans). This natural compound was compared with the widespread synthetic xenobiotic tetrabromobisphenol-A (TBBP-A) found in marine sediments and mussels. We found a neuro-stimulating effect for DBAA; this is contradictory to existing toxicological reports of mammals that applied comparatively high dosages. For TBBP-A, we found a hormetic concentration-effect relationship. As chemicals rarely occur isolated in the environment, a combination of both organobromines was also examined. Surprisingly, the presence of DBAA increased the toxicity of TBBP-A. Our results demonstrated that organohalogens have the potential to affect single organisms especially by altering the neurological processes, even with promoting effects on exposed organisms

    Overlooked risks of biochars: persistent free radicals trigger neurotoxicity in Caenorhabditis elegans

    No full text
    In recent years, biochars have gained increasing interest in mitigating climate changes and revitalizing contaminated or drained soil. Studies determining their impact on the ecosystem, especially on soil invertebrates, however, are still scarce and the neurotoxic potential of biochars has never been evaluated before. Using the model organism Caenorhabditis elegans we determined the neurotoxic effect of biochar produced from rice straw by pyrolysis at 500 degrees C at concentrations ranging from 0 to 2000 mg C.L(-1). Biochar had a hormetic effect on locomotion behavior. Furthermore, high concentrations impaired defecation as well as the recognition and response to a chemical attractant. None of the potential toxic chemicals in the biochar had sufficient high concentrations to explain the detected neurotoxic effect. Using electron paramagnetic resonance (EPR) spectroscopy, we detected free radicals in the biochar. Detrimental reaction of free radicals with biotic macromolecules can induce oxidative stress responses and are a potential reason for the evaluated neurotoxic effect of biochar. Overall, we were able to prove that biochars have the potential to act as weak neurotoxins to soil organisms and effects of persistent free radicals should be investigated further

    Overlooked Risks of Biochars: Persistent Free Radicals trigger Neurotoxicity in <i>Caenorhabditis elegans</i>

    No full text
    In recent years, biochars have gained increasing interest in mitigating climate changes and revitalizing contaminated or drained soil. Studies determining their impact on the ecosystem, especially on soil invertebrates, however, are still scarce and the neurotoxic potential of biochars has never been evaluated before. Using the model organism <i>Caenorhabditis elegans</i> we determined the neurotoxic effect of biochar produced from rice straw by pyrolysis at 500 °C at concentrations ranging from 0 to 2000 mg C·L<sup>–1</sup>. Biochar had a hormetic effect on locomotion behavior. Furthermore, high concentrations impaired defecation as well as the recognition and response to a chemical attractant. None of the potential toxic chemicals in the biochar had sufficient high concentrations to explain the detected neurotoxic effect. Using electron paramagnetic resonance (EPR) spectroscopy, we detected free radicals in the biochar. Detrimental reaction of free radicals with biotic macromolecules can induce oxidative stress responses and are a potential reason for the evaluated neurotoxic effect of biochar. Overall, we were able to prove that biochars have the potential to act as weak neurotoxins to soil organisms and effects of persistent free radicals should be investigated further
    corecore