2,320 research outputs found

    Plasmon-Exciton Coupling Using DNA Templates

    Full text link
    Coherent energy exchange between plasmons and excitons is a phenomenon that arises in the strong coupling regime resulting in distinct hybrid states. The DNA-origami technique provides an ideal framework to custom-tune plasmon-exciton nanostructures. By employing this well controlled self-assembly process, we realized hybrid states by precisely positioning metallic nanoparticles in a defined spatial arrangement with fixed nanometer-sized interparticle spacing. Varying the nanoparticle diameter between 30 nm and 60 nm while keeping their separation distance constant allowed us to precisely adjust the plasmon resonance of the structure to accurately match the energy frequency of a J-aggregate exciton. With this system we obtained strong plasmon-exciton coupling and studied far-field scattering at the single-structure level. The individual structures displayed normal mode splitting up to 170 meV. The plasmon tunability and the strong field confinement attained with nanodimers on DNA-origami renders an ideal tool to bottom-up assembly plasmon-exciton systems operating at room temperature.Comment: This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Nano Letters, copyright \copyright American Chemical Society after peer review. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b03015, Nano Letters 201

    Simultaneous microsurgical spermatic vein ligation and sclerotherapy - A combined procedure for the treatment of recurrent or persistent varicocele

    Get PDF
    Objectives: Microsurgical ligation as well as antegrade sclerotherapy have been established in varicocele treatment. The aim of this study was to evaluate whether a combination of microsurgery. and sclerotherapy can: provide a safe and effective treatment of varicocele recurrence or persistence. Methods. Nine patients with, recurrent or persistent varicoceles were operated by means of the combination method. Under microscopic control varix veins were ligated selectively preserving: lymphatics and arteries. Ectopic veins as a possible source for varicocele persistence or recurrence were also ligated. Finally, an intraoperative venography with subsequent sclerotherapy was, performed through one of the dissected veins. Results. Despite: difficult anatomical situations after previous surgical interventions, the operations were perform, ed successfully without any complications. Clinical controls showed varicocele disappearance without damage of the testis. No varicocele recurrence or persistence was observed. Conclusions. This method combines the advantages of both methods. Precision of the microsurgical technique is combined with velocity of sclerotherapy. Thus, it may represent an Interesting alternative to conventional operation methods especially in the treatment of recurrent or persistent varicoceles. Copyright (C) 2001 S. Karger AG, Basel

    Timing molecular motion and production with a synthetic transcriptional clock

    Get PDF
    The realization of artificial biochemical reaction networks with unique functionality is one of the main challenges for the development of synthetic biology. Due to the reduced number of components, biochemical circuits constructed in vitro promise to be more amenable to systematic design and quantitative assessment than circuits embedded within living organisms. To make good on that promise, effective methods for composing subsystems into larger systems are needed. Here we used an artificial biochemical oscillator based on in vitro transcription and RNA degradation reactions to drive a variety of “load” processes such as the operation of a DNA-based nanomechanical device (“DNA tweezers”) or the production of a functional RNA molecule (an aptamer for malachite green). We implemented several mechanisms for coupling the load processes to the oscillator circuit and compared them based on how much the load affected the frequency and amplitude of the core oscillator, and how much of the load was effectively driven. Based on heuristic insights and computational modeling, an “insulator circuit” was developed, which strongly reduced the detrimental influence of the load on the oscillator circuit. Understanding how to design effective insulation between biochemical subsystems will be critical for the synthesis of larger and more complex systems

    Polycapillary based μXRF station for 3D colour tomography

    Get PDF
    The “Rainbow X-Ray” (RXR) experimental station at XLab Frascati of the Frascati’s National Laboratories (LNF) INFN is a dedicated station for X-ray fluorescence studies based on the use of polycapillary lenses in a confocal geometry. The flexible RXR layout allows investigating specimens of the dimensions ranging from several millimeters up to half meter and weighting up to several tens of kilograms. Compared to similar existing XRF stations, apart of the possibility for investigating large samples, the main advantage of this equipment is the detection system with two spectrometers optimized to work separately at high and at low X-ray energie

    Reciprocal regulation of PKA and rac signaling

    Get PDF
    Activated G protein-coupled receptors (GPCRs) and receptor tyrosine kinases relay extracellular signals through spatial and temporal controlled kinase and GTPase entities. These enzymes are coordinated by multifunctional scaffolding proteins for precise intracellular signal processing. The cAMP-dependent protein kinase A (PKA) is the prime example for compartmentalized signal transmission downstream of distinct GPCRs. A-kinase anchoring proteins tether PKA to specific intracellular sites to ensure precision and directionality of PKA phosphorylation events. Here, we show that the Rho-GTPase Rac contains A-kinase anchoring protein properties and forms a dynamic cellular protein complex with PKA. The formation of this transient core complex depends on binary interactions with PKA subunits, cAMP levels and cellular GTP-loading accounting for bidirectional consequences on PKA and Rac downstream signaling. We show that GTP-Rac stabilizes the inactive PKA holoenzyme. However, β-adrenergic receptor-mediated activation of GTP-Rac–bound PKA routes signals to the Raf-Mek-Erk cascade, which is critically implicated in cell proliferation. We describe a further mechanism of how cAMP enhances nuclear Erk1/2 signaling: It emanates from transphosphorylation of p21-activated kinases in their evolutionary conserved kinase-activation loop through GTP-Rac compartmentalized PKA activities. Sole transphosphorylation of p21-activated kinases is not sufficient to activate Erk1/2. It requires complex formation of both kinases with GTP-Rac1 to unleash cAMP-PKA–boosted activation of Raf-Mek-Erk. Consequently GTP-Rac functions as a dual kinase-tuning scaffold that favors the PKA holoenzyme and contributes to potentiate Erk1/2 signaling. Our findings offer additional mechanistic insights how β-adrenergic receptor-controlled PKA activities enhance GTP-Rac–mediated activation of nuclear Erk1/2 signaling

    The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering.

    Get PDF
    In this study, we examined the effects of varying collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering. Three different collagen contents (0.25%, 0.5% and 1% collagen) and two different dehydrothermal (DHT) crosslinking processes [1] 105 degrees C for 24 h and [2] 150 degrees C for 48 h were investigated. These scaffolds were assessed for (1) pore size, (2) permeability (3) compressive strength and (4) cell viability. The largest pore size, permeability rate, compressive modulus, cell number and cell metabolic activity was all found to occur on the 1% collagen scaffold due to its increased collagen composition and the DHT treatment at 150 degrees C was found to significantly improve the mechanical properties and not to affect cellular number or metabolic activity. These results indicate that doubling the collagen content to 1% and dehydrothermally crosslinking the scaffold at 150 degrees C for 48 h has enhanced mechanical and biological properties of the scaffold making it highly attractive for use in bone tissue engineering

    Reversible DNA i-motif to hairpin switching induced by copper(II) cations

    Get PDF
    i-Motif DNA structures have previously been utilised for many different nanotechnological applications, but all have used changes in pH to fold the DNA. Herein we describe how copper(ii) cations can alter the conformation of i-motif DNA into an alternative hairpin structure which is reversible by chelation with EDTA
    corecore