656 research outputs found

    Nonintegrability of the two-body problem in constant curvature spaces

    Full text link
    We consider the reduced two-body problem with the Newton and the oscillator potentials on the sphere S2{\bf S}^{2} and the hyperbolic plane H2{\bf H}^{2}. For both types of interaction we prove the nonexistence of an additional meromorphic integral for the complexified dynamic systems.Comment: 20 pages, typos correcte

    Quantum Monte Carlo scheme for frustrated Heisenberg antiferromagnets

    Full text link
    When one tries to simulate quantum spin systems by the Monte Carlo method, often the 'minus-sign problem' is encountered. In such a case, an application of probabilistic methods is not possible. In this paper the method has been proposed how to avoid the minus sign problem for certain class of frustrated Heisenberg models. The systems where this method is applicable are, for instance, the pyrochlore lattice and the J1−J2J_1-J_2 Heisenberg model. The method works in singlet sector. It relies on expression of wave functions in dimer (pseudo)basis and writing down the Hamiltonian as a sum over plaquettes. In such a formulation, matrix elements of the exponent of Hamiltonian are positive.Comment: 19 LaTeX pages, 6 figures, 1 tabl

    The harmonic oscillator on Riemannian and Lorentzian configuration spaces of constant curvature

    Full text link
    The harmonic oscillator as a distinguished dynamical system can be defined not only on the Euclidean plane but also on the sphere and on the hyperbolic plane, and more generally on any configuration space with constant curvature and with a metric of any signature, either Riemannian (definite positive) or Lorentzian (indefinite). In this paper we study the main properties of these `curved' harmonic oscillators simultaneously on any such configuration space, using a Cayley-Klein (CK) type approach, with two free parameters \ki, \kii which altogether correspond to the possible values for curvature and signature type: the generic Riemannian and Lorentzian spaces of constant curvature (sphere S2{\bf S}^2, hyperbolic plane H2{\bf H}^2, AntiDeSitter sphere {\bf AdS}^{\unomasuno} and DeSitter sphere {\bf dS}^{\unomasuno}) appear in this family, with the Euclidean and Minkowski spaces as flat limits. We solve the equations of motion for the `curved' harmonic oscillator and obtain explicit expressions for the orbits by using three different methods: first by direct integration, second by obtaining the general CK version of the Binet's equation and third, as a consequence of its superintegrable character. The orbits are conics with centre at the potential origin in any CK space, thereby extending this well known Euclidean property to any constant curvature configuration space. The final part of the article, that has a more geometric character, presents those results of the theory of conics on spaces of constant curvature which are pertinent.Comment: 29 pages, 6 figure

    Two-dimensional charge order in layered 2-1-4 perovskite oxides

    Full text link
    Monte Carlo simulations are performed on the three-dimensional (3D) Ising model with the 2-1-4 layered perovskite structure as a minimal model for checkerboard charge ordering phenomena in layered perovskite oxides. Due to the interlayer frustration, only 2D long-range order emerges with a finite correlation length along the c axis. Critical exponents of the transition change continuously as a function of the interlayer coupling constant. The interlayer long-range Coulomb interaction decays exponentially and is negligible even between the second-neighbor layers. Instead, monoclinic distortion of a tetragonal unit cell lifts the macroscopic degeneracy to induce a 3D charge ordering. The dimensionality of the charge order in La0.5_{0.5}Sr1.5_{1.5}MnO4_4 is discussed from this viewpoint.Comment: 5 pages including 6 figures, with major changes including discussion on charge ordering phenomena in layered perovskite oxide

    Establishing a lesser kestrel colony in an urban environment for research purposes

    Get PDF
    [ES] Debido al declive reciente de las poblaciones de Falco naumanni, se han llevado a cabo numerosos proyectos de reintroducción y refuerzo de sus poblaciones en varios países mediterráneos. Aprovechando la experiencia de proyectos previos, intentamos establecer una colonia de F. naumanni en la cubierta de la sede central de la Estación Biológica de Doñana, un edificio moderno y recientemente construido en Sevilla, sur de España. Nuestro objetivo es obtener un acceso fácil a una población urbana y silvestre de esta especie modelo con fines científicos. Después de la liberación de los primeros individuos mediante el método de crianza campestre hace cinco años, nuestra colonia experimental parece haberse establecido. Tres, seis y tres parejas intentaron reproducirse en los años 2010, 2011 y 2012, respectivamente.Peer reviewe

    Wave function mapping in graphene quantum dots with soft confinement

    Full text link
    Using low-temperature scanning tunneling spectroscopy, we map the local density of states (LDOS) of graphene quantum dots supported on Ir(111). Due to a band gap in the projected Ir band structure around the graphene K point, the electronic properties of the QDs are dominantly graphene-like. Indeed, we compare the results favorably with tight binding calculations on the honeycomb lattice based on parameters derived from density functional theory. We find that the interaction with the substrate near the edge of the island gradually opens a gap in the Dirac cone, which implies soft-wall confinement. Interestingly, this confinement results in highly symmetric wave functions. Further influences of the substrate are given by the known moir{\'e} potential and a 10% penetration of an Ir surface resonanceComment: 7 pages, 11 figures, DFT calculations directly showing the origin of soft confinment, correct identification of the state penetrating from Ir(111) into graphen

    Two-dimensional periodic frustrated Ising models in a transverse field

    Full text link
    We investigate the interplay of classical degeneracy and quantum dynamics in a range of periodic frustrated transverse field Ising systems at zero temperature. We find that such dynamics can lead to unusual ordered phases and phase transitions, or to a quantum spin liquid (cooperative paramagnetic) phase as in the triangular and kagome lattice antiferromagnets, respectively. For the latter, we further predict passage to a bond-ordered phase followed by a critical phase as the field is tilted. These systems also provide exact realizations of quantum dimer models introduced in studies of high temperature superconductivity.Comment: Revised introduction; numerical error in hexagonal section correcte
    • …
    corecore