8 research outputs found

    Development, Function, and Clinical Significance of Plasmacytoid Dendritic Cells in Chronic Myeloid Leukemia.

    No full text
    Plasmacytoid dendritic cells (pDC) are the main producers of a key T-cell-stimulatory cytokine, IFNα, and critical regulators of antiviral immunity. Chronic myeloid leukemia (CML) is caused by BCR-ABL, which is an oncogenic tyrosine kinase that can be effectively inhibited with ABL-selective tyrosine kinase inhibitors (TKI). BCR-ABL-induced suppression of the transcription factor interferon regulatory factor 8 was previously proposed to block pDC development and compromise immune surveillance in CML. Here, we demonstrate that pDCs in newly diagnosed CML (CML-pDC) develop quantitatively normal and are frequently positive for the costimulatory antigen CD86. They originate from low-level BCR-ABL-expressing precursors. CML-pDCs also retain their competence to maturate and to secrete IFN. RNA sequencing reveals a strong inflammatory gene expression signature in CML-pDCs. Patients with high CML-pDC counts at diagnosis achieve inferior rates of deep molecular remission (MR) under nilotinib, unless nilotinib therapy is combined with IFN, which strongly suppresses circulating pDC counts. Although most pDCs are BCR-ABL-negative in MR, a substantial proportion of BCR-ABL + CML-pDCs persists under TKI treatment. This could be of relevance, because CML-pDCs elicit CD8+ T cells, which protect wild-type mice from CML. Together, pDCs are identified as novel functional DC population in CML, regulating antileukemic immunity and treatment outcome in CML.Significance: CML-pDC originates from low-level BCR-ABL expressing stem cells into a functional immunogenic DC-population regulating antileukemic immunity and treatment outcome in CM

    Evidence for the existence of two new members of the family Chlamydiaceae and proposal of Chlamydia avium sp. nov. and Chlamydia gallinacea sp. nov.

    No full text
    The family Chlamydiaceae with the recombined single genus Chlamydia currently comprises nine species, all of which are obligate intracellular organisms distinguished by a unique biphasic developmental cycle. Anecdotal evidence from epidemiological surveys in flocks of poultry, pigeons and psittacine birds have indicated the presence of non-classified chlamydial strains, some of which may act as pathogens. In the present study, phylogenetic analysis of ribosomal RNA and ompA genes, as well as multi-locus sequence analysis of 11 field isolates were conducted. All independent analyses assigned the strains into two different clades of monophyletic origin corresponding to pigeon and psittacine strains or poultry isolates, respectively. Comparative genome analysis involving the type strains of currently accepted Chlamydiaceae species and the designated type strains representing the two new clades confirmed that the latter could be classified into two different species as their average nucleotide identity (ANI) values were always below 94%, both with the closest relative species and between themselves. In view of the evidence obtained from the analyses, we propose the addition of two new species to the current classification: Chlamydia avium sp. nov. comprising strains from pigeons and psittacine birds (type strain 10DC88(T); DSMZ: DSM27005(T), CSUR: P3508(T)) and Chlamydia gallinacea sp. nov. comprising strains from poultry (type strain 08-1274/3(T); DSMZ: DSM27451(T), CSUR: P3509(T))

    Consistent effects of non-invasive vagus nerve stimulation (nVNS) for the acute treatment of migraine: Additional findings from the randomized, sham-controlled, double-blind PRESTO trial 11 Medical and Health Sciences 1103 Clinical Sciences

    No full text
    BACKGROUND: Non-invasive vagus nerve stimulation (nVNS) has been shown to be practical, safe, and well tolerated for treating primary headache disorders. The recent multicenter, randomized, double-blind, sham-controlled PRESTO trial provided Class I evidence that for patients with episodic migraine, nVNS significantly increases the probability of having mild pain or being pain-free 2 h post stimulation. We report additional pre-defined secondary and other end points from PRESTO that demonstrate the consistency and durability of nVNS efficacy across a broad range of outcomes. METHODS: After a 4-week observation period, 248 patients with episodic migraine with/without aura were randomly assigned to acute treatment of migraine attacks with nVNS (n = 122) or a sham device (n = 126) during a double-blind period lasting 4 weeks (or until the patient had treated 5 attacks). All patients received nVNS therapy during the subsequent 4-week/5-attack open-label period. RESULTS: The intent-to-treat population consisted of 243 patients. The nVNS group (n = 120) had a significantly greater percentage of attacks treated during the double-blind period that were pain-free at 60 (P = 0.005) and 120 min (P = 0.026) than the sham group (n = 123) did. Similar results were seen for attacks with pain relief at 60 (P = 0.025) and 120 min (P = 0.018). For the first attack and all attacks, the nVNS group had significantly greater decreases (vs sham) in pain score from baseline to 60 min (P = 0.029); the decrease was also significantly greater for nVNS at 120 min for the first attack (P = 0.011). Results during the open-label period were consistent with those of the nVNS group during the double-blind period. The incidence of adverse events (AEs) and adverse device effects was low across all study periods, and no serious AEs occurred. CONCLUSIONS: These results further demonstrate that nVNS is an effective and reliable acute treatment for multiple migraine attacks, which can be used safely while preserving the patient's option to use traditional acute medications as rescue therapy, possibly decreasing the risk of medication overuse. Together with its practicality and optimal tolerability profile, these findings suggest nVNS has value as a front-line option for acute treatment of migraine. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02686034
    corecore