122 research outputs found

    Nanoscale Control of the Surface Functionality of Polymeric 2D Materials

    Get PDF
    Typically, 2D nanosheets have a homogeneous surface, making them a major challenge to structure. This study proposes a novel concept of 2D organic nanosheets with a heterogeneously functionalized surface. This work achieves this by consecutively crystallizing two precisely synthesized polymers with different functional groups in the polymer backbone in a two-step process. First, the core platelet is formed and then the second polymer is crystallized around it. As a result, the central area of the platelets has a different surface functionality than the periphery. This concept offers two advantages: the resulting polymeric 2D platelets are stable in dispersion, which simplifies further processing and makes both crystal surfaces accessible for subsequent functionalization. Additionally, a wide variety of polymers can be used, making the process and the choice of surface functionalization very flexible.</p

    Defect engineering of polyethylene-like polyphosphoesters: Solid-state NMR characterization and surface chemistry of anisotropic polymer nanoplatelets

    Get PDF
    Anisotropic materials with very high aspect ratios, such as nanoplatelets, are an exciting class of materials due to their unique properties based on their unilamellar geometry. Controlling their size and surface-functionality is challenging and has only be achieved in some cases for synthetic polymers. We present a general approach to prepare polymer-nanoplatelets with control over the lateral size and basal functionality, by simple polycondensation of precisely spaced and functional phosphate groups in polyethylene-like polymers. Because of the relatively large size of the phosphate groups, they are expelled from the bulk crystal to the basal surface. This allows to control the chain-folding during crystallization, which we analyzed via solid-state NMR and TEM. Furthermore, we present chemistry “on the surface” of the platelets: the pendant ester group at the phosphate offers the possibility to introduce functional groups accessible for further chemical modification on the crystal surface. This is shown by introducing a 2-acetylthioethyl ester group and subsequently cleaving this 2-acetylthioethyl ester group to the free P–OH. Together, these results render polyethylene-like polyphosphoesters a versatile platform for soft-matter nanoplatelets as functional colloids

    Triple-target stimuli-responsive anti-COVID-19 face mask with physiological virus-inactivating agents

    Get PDF
    Conventional face masks to prevent SARS-CoV-2 transmission are mostly based on a passive filtration principle. Ideally, anti-COVID-19 masks should protect the carrier not only by size exclusion of virus aerosol particles, but also be able to capture and destroy or inactivate the virus. Here we present the proof-of-concept of a filter mat for such a mask, which actively attracts aerosol droplets and kills the virus. The electrospun mats are made of polycaprolactone (PCL) a hydrophilic, functionalizable and biodegradable polyester, into which inorganic polyphosphate (polyP) a physiological biocompatible, biodegradable and antivirally active polymer (chain length, ∌40 P(i) units) has been integrated. A soluble Na-polyP as well as amorphous calcium polyP nanoparticles (Ca-polyP-NP) have been used. In this composition, the polyP component of the polyP-PCL mats is stable in aqueous protein-free environment, but capable of transforming into a gel-like coacervate upon contact with divalent cations and protein like mucin present in (virus containing) aerosol droplets. In addition, the Ca-polyP-NP are used as a carrier of tretinoin (all-trans retinoic acid) which blocks the function of the SARS-CoV-2 envelope (E) protein, an ion channel forming viroporin. The properties of this novel mask filter mats are as follows: First, to attract and to trap virus-like particles during the polyP coacervate formation induced in situ by aerosol droplets on the spun PCL fibers, as shown here by using SARS-CoV-2 mimicking fluorescent nanoparticles. Second, after disintegration the NP by the aerosol-mucus constituents, to release polyP that binds to and abolishes the function of the receptor binding domain of the viral spike protein. Third, to destroy the virus by releasing tretinoin, as shown by the disruption of virus-mimicking liposomes with the integrated recombinant viral viroporin. It is proposed that these properties, which are inducible (stimuli responsive), will allow the design of antiviral masks that are smart

    Controlling the crystal structure of precisely spaced polyethylene-like polyphosphoesters

    Get PDF
    Understanding polymer crystallization is important for polyethylene-like materials. A small fraction of monomers with functional groups within the polyethylene chain can act as crystallization “defects”. Such defects can be used to control the crystallization behavior in bulk and to generate functional anisotropic polymer crystals if crystallized from a dilute solution. Due to their geometry, phosphate groups cannot be incorporated in the polyethylene lamellae and thus control chain folding and crystal morphology. Herein, the synthesis and crystallization behavior for three different long-chain polyphosphates with a precise spacing of 20, 30, and 40 CH2-groups between each phosphate group are reported. Monomers were prepared by esterification of ethyl dichlorophosphate with respective tailor-made unsaturated alcohols. Acyclic diene metathesis (ADMET) polymerization and subsequent hydrogenation were used to receive polyethylene-like polyphosphoesters with molecular weights up 23 100 g mol−1. Polymer crystallization was studied from the melt and dilute solution. Samples were characterized by differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). A change in crystal structure from pseudo-hexagonal to orthorhombic was observed from the “C20” to the “C40” polymer. Melting points and lamellar thicknesses increased with the length of the aliphatic spacer from 51 °C (“C20”) to 62 °C (“C30”) and 91 °C (“C40”). Values for the long periods in bulk (3.1 nm for C20, 4.8 nm for C30, and 7.2 nm for C40) obtained by SAXS and TEM are in qualitative agreement. The thickness of the crystalline part obtained by AFM and TEM increased from about 1.0 nm (C20) to 2.0 nm (C30) to 2.9 nm (C40). Our systematic library of long-chain polyphosphates will allow designing anisotropic polymer colloids by crystallization from solution as functional and versatile colloid platform

    Versatile preparation of silica nanocapsules for biomedical applications

    Get PDF
    Core–shell nanocapsules are receiving increasing interest for drug delivery applications. Silica nanocapsules have been the focus of intensive studies due to their biocompatibility, versatile silica chemistry, and tunable porosity. However, a versatile one-step preparation of silica nanocapsules with well-defined core–shell structure, tunable size, flexible interior loading, and tailored shell composition, permeability, and surface functionalization for site-specific drug release and therapeutic tracking remains a challenge. Herein, an interfacially confined sol–gel process in miniemulsion for the one-step versatile preparation of functional silica nanocapsules is developed. Uniform nanocapsules with diameters from 60 to 400 nm are obtained and a large variety of hydrophobic liquids are encapsulated in the core. When solvents with low boiling point are loaded, subsequent solvent evaporation converts the initially hydrophobic cavity into an aqueous environment. Stimuli-responsive permeability of nanocapsules is programmed by introducing disulfide or tetrasulfide bonds in the shell. Selective and sustained release of dexamethasone in response to glutathione tripeptide for over 10 d is achieved. Fluorescence labeling of the silica shell and magnetic loading in the internal cavity enable therapeutic tracking of nanocapsules by fluorescence and electron microscopies. Thus, silica nanocapsules represent a promising theranostic nanoplatform for targeted drug delivery applications.Fil: Jiang, Shuai. Max Planck Institute for Polymer Research; AlemaniaFil: Mottola, Milagro. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂ­sicas y Naturales. Departamento de QuĂ­mica. CĂĄtedra de QuĂ­mica BiolĂłgica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones BiolĂłgicas y TecnolĂłgicas. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂ­sicas y Naturales. Instituto de Investigaciones BiolĂłgicas y TecnolĂłgicas; Argentina. Max Planck Institute For Polymer Research; AlemaniaFil: Han, Shen. Max Planck Institute For Polymer Research; AlemaniaFil: Thiramanas, Raweewan. Max Planck Institute For Polymer Research; AlemaniaFil: Graf, Robert. Max Planck Institute For Polymer Research; AlemaniaFil: Lieberwirth, Ingo. Max Planck Institute For Polymer Research; AlemaniaFil: MailĂ€nder, Volker. Max Planck Institute For Polymer Research; AlemaniaFil: Crespy, Daniel. Max Planck Institute For Polymer Research; AlemaniaFil: Landfester, Katharina. Max Planck Institute For Polymer Research; Alemani

    Extraordinary Performance of Carbon-Coated Anatase TiO2 as Sodium-Ion Anode

    Get PDF
    The synthesis of in situ polymer-functionalized anatase TiO2 particles using an anchoring block copolymer with hydroxamate as coordinating species is reported, which yields nanoparticles (≈11 nm) in multigram scale. Thermal annealing converts the polymer brushes into a uniform and homogeneous carbon coating as proven by high resolution transmission electron microscopy and Raman spectroscopy. The strong impact of particle size as well as carbon coating on the electrochemical performance of anatase TiO2 is demonstrated. Downsizing the particles leads to higher reversible uptake/release of sodium cations per formula unit TiO2 (e.g., 0.72 eq. Na+ (11 nm) vs only 0.56 eq. Na+ (40 nm)) while the carbon coating improves rate performance. The combination of small particle size and homogeneous carbon coating allows for the excellent electrochemical performance of anatase TiO2 at high (134 mAh g−1 at 10 C (3.35 A g−1)) and low (≈227 mAh g−1 at 0.1 C) current rates, high cycling stability (full capacity retention between 2nd and 300th cycle at 1 C) and improved coulombic efficiency (≈99.8%)
    • 

    corecore