44 research outputs found

    Plutarch’s Politics: Between City and Empire

    Get PDF

    Executive Power in Theory and Practice

    Get PDF
    Since September 11, 2001, long-standing debates over the nature and proper extent of executive power have assumed a fresh urgency. What is executive power? When did it first emerge, and why? And what is the role of the executive within the American regime? In this book, eleven leading scholars of American politics and political theory address these and related questions, in essays on topics ranging from Aristotle and the Roman Republic to the presidencies of George W. Bush and Barack Obama.https://scholarship.richmond.edu/bookshelf/1051/thumbnail.jp

    The Ages of the Thin Disk, Thick Disk, and the Halo from Nearby White Dwarfs

    Full text link
    We present a detailed analysis of the white dwarf luminosity functions derived from the local 40 pc sample and the deep proper motion catalog of Munn et al (2014, 2017). Many of the previous studies ignored the contribution of thick disk white dwarfs to the Galactic disk luminosity function, which results in an erronous age measurement. We demonstrate that the ratio of thick/thin disk white dwarfs is roughly 20\% in the local sample. Simultaneously fitting for both disk components, we derive ages of 6.8-7.0 Gyr for the thin disk and 8.7 ±\pm 0.1 Gyr for the thick disk from the local 40 pc sample. Similarly, we derive ages of 7.4-8.2 Gyr for the thin disk and 9.5-9.9 Gyr for the thick disk from the deep proper motion catalog, which shows no evidence of a deviation from a constant star formation rate in the past 2.5 Gyr. We constrain the time difference between the onset of star formation in the thin disk and the thick disk to be 1.6−0.4+0.31.6^{+0.3}_{-0.4} Gyr. The faint end of the luminosity function for the halo white dwarfs is less constrained, resulting in an age estimate of 12.5−3.4+1.412.5^{+1.4}_{-3.4} Gyr for the Galactic inner halo. This is the first time ages for all three major components of the Galaxy are obtained from a sample of field white dwarfs that is large enough to contain significant numbers of disk and halo objects. The resultant ages agree reasonably well with the age estimates for the oldest open and globular clusters.Comment: ApJ, in pres

    The Ages of the Thin Disk, Thick Disk, and the Halo from Nearby White Dwarfs

    Get PDF
    We present a detailed analysis of the white dwarf luminosity functions derived from the local 40 pc sample and the deep proper motion catalog of Munn et al. (2014, 2017). Many of the previous studies ignored the contribution of thick disk white dwarfs to the Galactic disk luminosity function, which results in an erronous age measurement. We demonstrate that the ratio of thick/thin disk white dwarfs is roughly 20% in the local sample. Simultaneously fitting for both disk components, we derive ages of 6.8-7.0 Gyr for the thin disk and 8.7 ± 0.1 Gyr for the thick disk from the local 40 pc sample. Similarly, we derive ages of 7.4-8.2 Gyr for the thin disk and 9.5-9.9 Gyr for the thick disk from the deep proper motion catalog, which shows no evidence of a deviation from a constant star formation rate in the past 2.5 Gyr. We constrain the time difference between the onset of star formation in the thin disk and the thick disk to be 1.6 +0.3−0.4 Gyr. The faint end of the luminosity function for the halo white dwarfs is less constrained, resulting in an age estimate of 12.5 +1.4−3.4 Gyr for the Galactic inner halo. This is the first time ages for all three major components of the Galaxy are obtained from a sample of field white dwarfs that is large enough to contain significant numbers of disk and halo objects. The resultant ages agree reasonably well with the age estimates for the oldest open and globular clusters

    A Catalog of Spectroscopically Confirmed White Dwarfs from the Sloan Digital Sky Survey Data Release 4

    Get PDF
    We present a catalog of 9316 spectroscopically confirmed white dwarfs from the Sloan Digital Sky Survey Data Release 4. We have selected the stars through photometric cuts and spectroscopic modeling, backed up by a set of visual inspections. Roughly 6000 of the stars are new discoveries, roughly doubling the number of spectroscopically confirmed white dwarfs. We analyze the stars by performing temperature and surface gravity fits to grids of pure hydrogen and helium atmospheres. Among the rare outliers are a set of presumed helium-core DA white dwarfs with estimated masses below 0.3 Msun, including two candidates that may be the lowest masses yet found. We also present a list of 928 hot subdwarfs.Comment: Accepted by the Astrophysical Journal Supplements, 25 pages, 24 figures, LaTeX. The electronic catalog, as well as diagnostic figures and links to the spectra, is available at http://das.sdss.org/wdcat/dr4

    Magnetic White Dwarfs from the SDSS II. The Second and Third Data Releases

    Full text link
    Fifty-two magnetic white dwarfs have been identified in spectroscopic observations from the Sloan Digital Sky Survey (SDSS) obtained between mid-2002 and the end of 2004, including Data Releases 2 and 3. Though not as numerous nor as diverse as the discoveries from the first Data Release, the collection exhibits polar field strengths ranging from 1.5MG to ~1000MG, and includes two new unusual atomic DQA examples, a molecular DQ, and five stars that show hydrogen in fields above 500MG. The highest-field example, SDSSJ2346+3853, may be the most strongly magnetic white dwarf yet discovered. Analysis of the photometric data indicates that the magnetic sample spans the same temperature range as for nonmagnetic white dwarfs from the SDSS, and support is found for previous claims that magnetic white dwarfs tend to have larger masses than their nonmagnetic counterparts. A glaring exception to this trend is the apparently low-gravity object SDSSJ0933+1022, which may have a history involving a close binary companion.Comment: 20 pages, 4 figures Accepted for publication in the Astronomical Journa

    Additional Ultracool White Dwarfs Found in the Sloan Digital Sky Survey

    Full text link
    We identify seven new ultracool white dwarfs discovered in the Sloan Digital Sky Survey (SDSS). The SDSS photometry, spectra, and proper motions are presented, and additional BVRI data are given for these and other previously discovered ultracool white dwarfs. The observed colors span a remarkably wide range, qualitatively similar to colors predicted by models for very cool white dwarfs. One of the new stars (SDSS J1251+44) exhibits strong collision-induced absorption (CIA) in its spectra, while the spectra and colors of the other six are consistent with mild CIA. Another of the new discoveries (SDSS J2239+00A) is part of a binary system -- its companion is also a cool white dwarf, and other data indicate that the companion exhibits an infrared flux deficiency, making this the first binary system composed of two CIA white dwarfs. A third discovery (SDSS J0310-00) has weak Balmer emission lines. The proper motions of all seven stars are consistent with membership in the disk or thick disk.Comment: Accepted for Astrophysical Journal. 16 pages (includes 3 figures

    A Survey for Faint Stars of Large Proper Motion Using Extra Poss II Plates

    Get PDF
    We have conducted a search for new stars of high proper motion (≄\geq0.4 arcsec yr−1^{-1}) using POSS II fields for which an extra IIIaF (red) plate of good quality exists, along with useable IIIaJ (blue) and IV-N (infrared) plates taken at epochs differing by a minimum of 1.5 years. Thirty-five fields at Galactic latitudes ∣bâˆŁâ‰„|b| \geq 20o^o were measured, covering some 1378 deg2^2, or 3.3% of the sky. Searches with three plate combinations as well as all four plates were also made. Seven new stars were found with Ό≄\mu \geq0.5 arcsec yr−1^{-1}, which were therefore missed in the Luyten Half Second (LHS) Catalog. One of these is a common proper motion binary consisting of two subdwarf M stars; another is a cool white dwarf with probable halo kinematics. As a test of our completeness -- and of our ability to test that of Luyten -- 216 of 230 catalogued high proper motion stars were recovered by the software, or 94%. Reasons for incompleteness of the LHS are discussed, such as the simple fact that POSS II plates have deeper limiting magnitudes and greater overlap than did POSS I. Nonetheless, our results suggest that the LHS is closer to 90% complete than recent estimates in the literature (e.g 60%), and we propose a reason to account for one such lower estimate. The conclusion that the LHS Catalog is more complete has implications for the nature of the halo dark matter. In particular it strengthens the constraint on the local density of halo stars, especially white dwarfs at MV∌_V\sim17-18.Comment: Astronomical Journal, in press, 16 pages, 3 figure

    Discovery of New Ultracool White Dwarfs in the Sloan Digital Sky Survey

    Full text link
    We report the discovery of five very cool white dwarfs in the Sloan Digital Sky Survey (SDSS). Four are ultracool, exhibiting strong collision induced absorption (CIA) from molecular hydrogen and are similar in color to the three previously known coolest white dwarfs, SDSS J1337+00, LHS 3250 and LHS 1402. The fifth, an ultracool white dwarf candidate, shows milder CIA flux suppression and has a color and spectral shape similar to WD 0346+246. All five new white dwarfs are faint (g > 18.9) and have significant proper motions. One of the new ultracool white dwarfs, SDSS J0947, appears to be in a binary system with a slightly warmer (T_{eff} ~ 5000K) white dwarf companion.Comment: 15 pages, 3 figures, submitted to ApJL. Higher resolution versions of finding charts are available at http://astro.uchicago.edu/~gates/findingchart

    A Deep Proper Motion Catalog Within The Sloan Digital Sky Survey Footprint

    Get PDF
    A new proper motion catalog is presented, combining the Sloan Digital Sky Survey (SDSS) with second epoch observations in the r band within a portion of the SDSS imaging footprint. The new observations were obtained with the 90prime camera on the Steward Observatory Bok 90 inch telescope, and the Array Camera on the U.S. Naval Observatory, Flagstaff Station, 1.3 meter telescope. The catalog covers 1098 square degrees to r = 22.0, an additional 1521 square degrees to r = 20.9, plus a further 488 square degrees of lesser quality data. Statistical errors in the proper motions range from 5 mas/year at the bright end to 15 mas/year at the faint end, for a typical epoch difference of 6 years. Systematic errors are estimated to be roughly 1 mas/year for the Array Camera data, and as much as 2 - 4 mas/year for the 90prime data (though typically less). The catalog also includes a second epoch of r band photometry.Comment: 14 pages, 17 figures, accepted for publication in the Astronomical Journa
    corecore