5,060 research outputs found

    Exact Wavefunctions for a Delta Function Bose Gas with Higher Derivatives

    Get PDF
    A quantum mechanical system describing bosons in one space dimension with a kinetic energy of arbitrary order in derivatives and a delta function interaction is studied. Exact wavefunctions for an arbitrary number of particles and order of derivative are constructed. Also, equations determining the spectrum of eigenvalues are found

    Stability of Relativistic Matter With Magnetic Fields

    Full text link
    Stability of matter with Coulomb forces has been proved for non-relativistic dynamics, including arbitrarily large magnetic fields, and for relativistic dynamics without magnetic fields. In both cases stability requires that the fine structure constant alpha be not too large. It was unclear what would happen for both relativistic dynamics and magnetic fields, or even how to formulate the problem clearly. We show that the use of the Dirac operator allows both effects, provided the filled negative energy `sea' is defined properly. The use of the free Dirac operator to define the negative levels leads to catastrophe for any alpha, but the use of the Dirac operator with magnetic field leads to stability.Comment: This is an announcement of the work in cond-mat/9610195 (LaTeX

    The Ground States of Large Quantum Dots in Magnetic Fields

    Full text link
    The quantum mechanical ground state of a 2D NN-electron system in a confining potential V(x)=Kv(x)V(x)=Kv(x) (KK is a coupling constant) and a homogeneous magnetic field BB is studied in the high density limit NN\to\infty, KK\to \infty with K/NK/N fixed. It is proved that the ground state energy and electronic density can be computed {\it exactly} in this limit by minimizing simple functionals of the density. There are three such functionals depending on the way B/NB/N varies as NN\to\infty: A 2D Thomas-Fermi (TF) theory applies in the case B/N0B/N\to 0; if B/Nconst.0B/N\to{\rm const.}\neq 0 the correct limit theory is a modified BB-dependent TF model, and the case B/NB/N\to\infty is described by a ``classical'' continuum electrostatic theory. For homogeneous potentials this last model describes also the weak coupling limit K/N0K/N\to 0 for arbitrary BB. Important steps in the proof are the derivation of a new Lieb-Thirring inequality for the sum of eigenvalues of single particle Hamiltonians in 2D with magnetic fields, and an estimation of the exchange-correlation energy. For this last estimate we study a model of classical point charges with electrostatic interactions that provides a lower bound for the true quantum mechanical energy.Comment: 57 pages, Plain tex, 5 figures in separate uufil

    The Flux-Phase of the Half-Filled Band

    Full text link
    The conjecture is verified that the optimum, energy minimizing magnetic flux for a half-filled band of electrons hopping on a planar, bipartite graph is π\pi per square plaquette. We require {\it only} that the graph has periodicity in one direction and the result includes the hexagonal lattice (with flux 0 per hexagon) as a special case. The theorem goes beyond previous conjectures in several ways: (1) It does not assume, a-priori, that all plaquettes have the same flux (as in Hofstadter's model); (2) A Hubbard type on-site interaction of any sign, as well as certain longer range interactions, can be included; (3) The conclusion holds for positive temperature as well as the ground state; (4) The results hold in D2D \geq 2 dimensions if there is periodicity in D1D-1 directions (e.g., the cubic lattice has the lowest energy if there is flux π\pi in each square face).Comment: 9 pages, EHL14/Aug/9

    Free Energy of a Dilute Bose Gas: Lower Bound

    Full text link
    A lower bound is derived on the free energy (per unit volume) of a homogeneous Bose gas at density ρ\rho and temperature TT. In the dilute regime, i.e., when a3ρ1a^3\rho \ll 1, where aa denotes the scattering length of the pair-interaction potential, our bound differs to leading order from the expression for non-interacting particles by the term 4πa(2ρ2[ρρc]+2)4\pi a (2\rho^2 - [\rho-\rho_c]_+^2). Here, ρc(T)\rho_c(T) denotes the critical density for Bose-Einstein condensation (for the non-interacting gas), and []+[ ]_+ denotes the positive part. Our bound is uniform in the temperature up to temperatures of the order of the critical temperature, i.e., Tρ2/3T \sim \rho^{2/3} or smaller. One of the key ingredients in the proof is the use of coherent states to extend the method introduced in [arXiv:math-ph/0601051] for estimating correlations to temperatures below the critical one.Comment: LaTeX2e, 53 page

    Quantum shock waves in the Heisenberg XY model

    Full text link
    We show the existence of quantum states of the Heisenberg XY chain which closely follow the motion of the corresponding semi-classical ones, and whose evolution resemble the propagation of a shock wave in a fluid. These states are exact solutions of the Schroedinger equation of the XY model and their classical counterpart are simply domain walls or soliton-like solutions.Comment: 15 pages,6 figure

    Ground state energy of large polaron systems

    Get PDF
    The last unsolved problem about the many-polaron system, in the Pekar-Tomasevich approximation, is the case of bosons with the electron-electron Coulomb repulsion of strength exactly 1 (the 'neutral case'). We prove that the ground state energy, for large NN, goes exactly as N7/5-N^{7/5}, and we give upper and lower bounds on the asymptotic coefficient that agree to within a factor of 22/52^{2/5}.Comment: 16 page

    Further implications of the Bessis-Moussa-Villani conjecture

    Full text link
    We find further implications of the BMV conjecture, which states that for hermitian matrices A and B, the function Tr exp(A - t B) is the Laplace transform of a positive measure.Comment: LaTeX, 8 page

    The Ground State Energy of Dilute Bose Gas in Potentials with Positive Scattering Length

    Full text link
    The leading term of the ground state energy/particle of a dilute gas of bosons with mass mm in the thermodynamic limit is 2π2aρ/m2\pi \hbar^2 a \rho/m when the density of the gas is ρ\rho, the interaction potential is non-negative and the scattering length aa is positive. In this paper, we generalize the upper bound part of this result to any interaction potential with positive scattering length, i.e, a>0a>0 and the lower bound part to some interaction potentials with shallow and/or narrow negative parts.Comment: Latex 28 page

    Stability of atoms and molecules in an ultrarelativistic Thomas-Fermi-Weizsaecker model

    Full text link
    We consider the zero mass limit of a relativistic Thomas-Fermi-Weizsaecker model of atoms and molecules. We find bounds for the critical nuclear charges that ensure stability.Comment: 8 pages, LaTe
    corecore