2 research outputs found

    Guidance for Health Care Leaders During the Recovery Stage of the COVID-19 Pandemic: A Consensus Statement

    No full text
    Geerts JM, Kinnair D, Taheri P, et al. Guidance for Health Care Leaders During the Recovery Stage of the COVID-19 Pandemic: A Consensus Statement. JAMA network open. 2021;4(7):e2120295.Importance: The COVID-19 pandemic is the greatest global test of health leadership of our generation. There is an urgent need to provide guidance for leaders at all levels during the unprecedented preresolution recovery stage.; Objective: To create an evidence- and expertise-informed framework of leadership imperatives to serve as a resource to guide health and public health leaders during the postemergency stage of the pandemic.; Evidence Review: A literature search in PubMed, MEDLINE, and Embase revealed 10 910 articles published between 2000 and 2021 that included the terms leadership and variations of emergency, crisis, disaster, pandemic, COVID-19, or public health. Using the Standards for Quality Improvement Reporting Excellence reporting guideline for consensus statement development, this assessment adopted a 6-round modified Delphi approach involving 32 expert coauthors from 17 countries who participated in creating and validating a framework outlining essential leadership imperatives.; Findings: The 10 imperatives in the framework are: (1) acknowledge staff and celebrate successes; (2) provide support for staff well-being; (3) develop a clear understanding of the current local and global context, along with informed projections; (4) prepare for future emergencies (personnel, resources, protocols, contingency plans, coalitions, and training); (5) reassess priorities explicitly and regularly and provide purpose, meaning, and direction; (6) maximize team, organizational, and system performance and discuss enhancements; (7) manage the backlog of paused services and consider improvements while avoiding burnout and moral distress; (8) sustain learning, innovations, and collaborations, and imagine future possibilities; (9) provide regular communication and engender trust; and (10) in consultation with public health and fellow leaders, provide safety information and recommendations to government, other organizations, staff, and the community to improve equitable and integrated care and emergency preparedness systemwide.; Conclusions and Relevance: Leaders who most effectively implement these imperatives are ideally positioned to address urgent needs and inequalities in health systems and to cocreate with their organizations a future that best serves stakeholders and communities

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    No full text
    Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore