107 research outputs found

    Manipulating Managed Execution Runtimes to Support Self-Healing Systems

    Get PDF
    Self-healing systems require that repair mechanisms are available to resolve problems that arise while the system executes. Managed execution environments such as the Common Language Runtime (CLR) and Java Virtual Machine (JVM) provide a number of application services (application isolation, security sandboxing, garbage collection and structured exception handling) which are geared primarily at making managed applications more robust. However, none of these services directly enables applications to perform repairs or consistency checks of their components. From a design and implementation standpoint, the preferred way to enable repair in a self-healing system is to use an externalized repair/adaptation architecture rather than hardwiring adaptation logic inside the system where it is harder to analyze, reuse and extend. We present a framework that allows a repair engine to dynamically attach and detach to/from a managed application while it executes essentially adding repair mechanisms as another application service provided in the execution environment

    A Structural Model for Octagonal Quasicrystals Derived from Octagonal Symmetry Elements Arising in β\beta-Mn Crystallization of a Simple Monatomic Liquid

    Full text link
    While performing molecular dynamics simulations of a simple monatomic liquid, we observed the crystallization of a material displaying octagonal symmetry in its simulated diffraction pattern. Inspection of the atomic arrangements in the crystallization product reveals large grains of the beta-Mn structure aligned along a common 4-fold axis, with 45 degree rotations between neighboring grains. These 45 degree rotations can be traced to the intercession of a second crystalline structure fused epitaxially to the beta-Mn domain surfaces, whose primitive cell has lattice parameters a = b = c = a_{beta-Mn}, alpha = beta = 90 degrees, and gamma = 45 degrees. This secondary phase adopts a structure which appears to have no known counterpart in the experimental literature, but can be simply derived from the Cr_3Si and Al_3Zr_4 structure types. We used these observations as the basis for an atomistic structural model for octagonal quasicrystals, in which the beta-Mn and the secondary phase structure unit cells serve as square and rhombic tiles (in projection), respectively. Its diffraction pattern down the octagonal axis resembles those experimentally measured. The model is unique in being consistent with high-resolution electron microscopy images showing square and rhombic units with edge-lengths equal to that of the beta-Mn unit cell. Energy minimization of this configuration, using the same pair potential as above, results in an alternative octagonal quasiperiodic structure with the same tiling but a different atomic decoration and diffraction pattern.Comment: 25 pages, 10 figure

    Resolving rotational stacking disorder and electronic level alignment in a 2d oligothiophene-based lead iodide perovskite

    Get PDF
    Two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs) represent diverse quantum well heterostructures composed of alternating inorganic and organic layers. While 2D HOIPs are nominally periodic in three dimensions for X-ray scattering, the inorganic layers can orient quasi-randomly, leading to rotational stacking disorder (RSD). RSD manifests as poorly resolved, diffuse X-ray scattering along the stacking direction, limiting the structural description to an apparently disordered subcell. However, local ordering preferences can still exist between adjacent unit cells and can considerably impact the properties, particularly the electronic structure. Here, we elucidate RSD and determine the preferred local ordering in the 2D [AE2T]PbI4 HOIP (AE2T: 5,5′-bis(ethylammonium)-[2,2′-bithiophene]). We use first-principles calculations to determine energy differences between a set of systematically generated supercells with different order patterns. We show that interlayer ordering tendencies are weak, explaining the observed RSD in terms of differing in-plane rotation of PbI6 octahedra in neighboring inorganic planes. In contrast, the ordering preference within a given organic layer is strong, favoring a herringbone-type arrangement of adjacent AE2T cations. The calculated electronic level alignments of proximal organic and inorganic frontier orbitals in the valence band vary significantly with the local arrangement of AE2T cations; only the most stable AE2T configuration leads to an interfacial type-Ib band alignment consistent with observed optical properties. The present study underscores the importance of resolving local structure arrangements in 2D HOIPs for reliable structure-property prediction

    Reduced diversity and increased virulence-gene carriage in intestinal enterobacteria of coeliac children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coeliac disease is an immune-mediated enteropathology triggered by the ingestion of cereal gluten proteins. This disorder is associated with imbalances in the composition of the gut microbiota that could be involved in its pathogenesis. The aim of the present study was to determine whether intestinal <it>Enterobacteriaceae </it>populations of active and non-active coeliac patients and healthy children differ in diversity and virulence-gene carriage, so as to establish a possible link between the pathogenic potential of enterobacteria and the disease.</p> <p>Methods</p> <p><it>Enterobacteriaceae </it>clones were isolated on VRBD agar from faecal samples of 31 subjects (10 active coeliac patients, 10 symptom-free coeliac patients and 11 healthy controls) and identified at species level by the API 20E system. <it>Escherichia coli </it>clones were classified into four phylogenetic groups A, B1, B2 and D and the prevalence of eight virulence-associated genes (type-1 fimbriae [<it>fimA</it>], P fimbriae [<it>papC</it>], S fimbriae [<it>sfaD/E</it>], Dr haemagglutinin [<it>draA</it>], haemolysin [<it>hlyA</it>], capsule K1 [<it>neuB</it>], capsule K5 [<it>KfiC</it>] and aerobactin [<it>iutA</it>]) was determined by multiplex PCR.</p> <p>Results</p> <p>A total of 155 <it>Enterobacteriaceae </it>clones were isolated. Non-<it>E. coli </it>clones were more commonly isolated in healthy children than in coeliac patients. The four phylogenetic <it>E. coli </it>groups were equally distributed in healthy children, while in both coeliac patients most commensal isolates belonged to group A. Within the virulent groups, B2 was the most prevalent in active coeliac disease children, while D was the most prevalent in non-active coeliac patients. <it>E coli </it>clones of the virulent phylogenetic groups (B2+D) from active and non-active coeliac patients carried a higher number of virulence genes than those from healthy individuals. Prevalence of P fimbriae (<it>papC</it>), capsule K5 (<it>sfaD/E</it>) and haemolysin (<it>hlyA</it>) genes was higher in <it>E. coli </it>isolated from active and non-active coeliac children than in those from control subjects.</p> <p>Conclusion</p> <p>This study has demonstrated that virulence features of the enteric microbiota are linked to coeliac disease.</p

    In Situ Synthesis and Single Crystal Synchrotron X-ray Diffraction Study of ht-Sn3Sb2 : An Example of How Complex Modulated Structures Are Becoming Generally Accessible

    No full text
    ConspectusRecent developments in X-ray sources and detectors and the parallel development of software for nonstandard crystallography has made analysis of very complex structural problems accessible to nonexperts. Here, we report the successful solution of the structure of ht-Sn3Sb2, an analysis that presents several challenges but that is still manageable in a relatively straightforward way. This compound exists only in a narrow temperature regime and undergoes an unquenchable phase transformation on cooling to room temperature; it contains two elements with close to identical scattering factors, and the structure is incommensurately modulated with four symmetry dependent modulation wave vectors.In this study, an attempt was first made to synthesize the title compound by in-house crystal growth in the stability region of ht-Sn3Sb2, followed by cooling to room temperature. This is known to produce mutiply twinned stistaite and elemental tin, and this sample, freshly prepared, was then reheated in situ at the single crystal materials beamline Crystal at the synchrotron Soleil. This method was unsuccessful as reheating the sample led to loss of Sn from stistaite as revealed by a change in the measured modulation wave vector.The compound was instead successfully synthesized in situ at the beamline by the topochemical reaction of single crystalline stistaite and liquid tin. A well-formed crystal of stistaite was enclosed in a quartz capillary together with a large excess of tin and heated above the melting point of tin but below the melting point of ht-Sn3Sb2. The structure was probed by sychrotron X-ray diffraction using a wavelength close to the absorption edge of Sn to maximize elemental contrast.In the diffraction patterns, first order satellites were observed, making the structure of ht-Sn3Sb2 incommensurately modulated. Further analysis exposes four q-vectors running along the body diagonals of the cubic unit cell (q1′ = α α α, q2′ = -α α -α, q3′ = -α -α α, q4′ = α -α -α).To facilitate the analysis, the q vectors were instead treated as axial (q1 = α 0 0, q2 = 0 α 0, q3 = 0 0 α) and an F-type extinction condition for satellites was introduced so that only reflections with hklmnp, mnp all odd or all even, were considered. Further, the modulation functions F(qi) were set to zero, and only modulation functions of the type F(qi′) were refined. The final model uses the four modulation functions, F(q1′), F(q2′), F(q3′), and F(q4′), to model occupancy Sn/Sb and positional modulation. The model shows a structure that comprises small NaCl type clusters, typically 7 × 7 × 7 atoms in extension, interspersed between single layers of elemental tin. The terminating layers of tin are slightly puckered, emulating an incipient deformation toward the structure of the layers perpendicular to the [001] direction in elemental tin. It is notable that this model is complementary to that of stistaite. In stistaite, two-dimensionally infinite slabs of rock salt are interspersed between layers of antimony along the trigonal [001] direction, so that the terminating Sb layers are the puckered bilayers typical for elemental Sb. Since all modulation functions are simple first-order harmonics, the structural model describes a locally disordered and most probably dynamic ordering

    Re4Si7, First in a New MoSi2-Based Family of 14-Electron Phases

    No full text
    A study was conducted to investigate the geometrical and electronic connections of Re4Si7 to the rich structural chemistry of the Nowotny Chimmney Ladder phases (NCL). Re4Si7 was prepared by arc-melting a pressed pellet of Re and Si in a stoichiometric ratio, sealing the resulting globule in an excavating quartz tube, and annealing the sample in a muffle furnace. It was found that NCLs were intermetallic compounds of composition TE2-X where T was the transition metal and E the main-group element. The NCLs formed defect variants of another transition-metal disilicide structure type similar to TiSi2. These phases also exhibited complex crystal structures resulting from relaxations in the E sublattice in response to the missing E atoms in the stoichiometry. This led to the formation of a significant variety of E atom helices whose helical repeat periods changed continuously with variations in x relative to the T atom sublattice
    • …
    corecore