2,119 research outputs found

    Uranium triamidoamine chemistry

    Get PDF
    Uranium triamidoamine chemistry is reviewed.</p

    Inflation during oscillations of the inflaton

    Get PDF
    Damour and Mukhanov have recently devised circumstances in which inflation may continue during the oscillatory phase which ensues once the inflaton field reaches the minimum of its potential. We confirm the existence of this phenomenon by numerical integration. In such circumstances the quantification of the amount of inflation requires particular care. We use a definition based on the decrease of the comoving Hubble length, and show that Damour and Mukhanov overestimated the amount of inflation occurring. We use the numerical calculations to check the validity of analytic approximations.Comment: 5 pages RevTeX file with 5 figures incorporated using eps

    Is there an imprint of Planck scale physics on inflationary cosmology?

    Get PDF
    We study the effects of the trans-Planckian dispersion relation on the spectrum of the primordial density perturbations during inflation. In contrast to the earlier analyses, we do not assume any specific form of the dispersion relation and allow the initial state of the field to be arbitrary. We obtain the spectrum of vacuum fluctuations of the quantum field by considering a scalar field satisfying the linear wave equation with higher spatial derivative terms propagating in the de Sitter space-time. We show that the power spectrum does not strongly depend on the dispersion relation and that the form of the dispersion relation does not play a significant role in obtaining the corrections to the scale invariant spectrum. We also show that the signatures of the deviations from the flat scale-invariant spectrum from the CMBR observations due to quantum gravitational effects cannot be differentiated from the standard inflationary scenario with an arbitrary initial state.Comment: 6 pages, uses RevTex4; References added; Final versio

    Inflation in Gauged 6D Supergravity

    Full text link
    In this note we demonstrate that chaotic inflation can naturally be realized in the context of an anomaly free minimal gauged supergravity in D=6 which has recently been the focus of some attention. This particular model has a unique maximally symmetric ground state solution, R3,1×S2R^{3,1} \times S^2 which leaves half of the six-dimensional supersymmetries unbroken. In this model, the inflaton field ϕ\phi originates from the complex scalar fields in the D=6 scalar hypermultiplet. The mass and the self couplings of the scalar field are dictated by the D=6 Lagrangian. The scalar potential has an absolute munimum at ϕ=0\phi = 0 with no undetermined moduli fields. Imposing a mild bound on the radius of S2S^2 enables us to obtain chaotic inflation. The low eenrgy equations of motion are shown to be consistent for the range of scalar field values relevant for inflation.Comment: one reference adde

    The inflationary prediction for primordial non-gaussianity

    Full text link
    We extend the \delta N formalism so that it gives all of the stochastic properties of the primordial curvature perturbation \zeta if the initial field perturbations are gaussian. The calculation requires only the knowledge of some family of unperturbed universes. A formula is given for the normalisation \fnl of the bispectrum of \zeta, which is the main signal of non-gaussianity. Examples of the use of the formula are given, and its relation to cosmological perturbation theory is explained.Comment: Revtex Latex file. 4 pages, no figures. v4: minor changes, typos corrected, references added and updated. Version published in Physical Review Letter

    Processing Issues in Top-Down Approaches to Quantum Computer Development in Silicon

    Get PDF
    We describe critical processing issues in our development of single atom devices for solid-state quantum information processing. Integration of single 31P atoms with control gates and single electron transistor (SET) readout structures is addressed in a silicon-based approach. Results on electrical activation of low energy (15 keV) P implants in silicon show a strong dose effect on the electrical activation fractions. We identify dopant segregation to the SiO2/Si interface during rapid thermal annealing as a dopant loss channel and discuss measures of minimizing it. Silicon nanowire SET pairs with nanowire width of 10 to 20 nm are formed by electron beam lithography in SOI. We present first results from Coulomb blockade experiments and discuss issues of control gate integration for sub-40nm gate pitch levels

    Anisotropic evolution of 5D Friedmann-Robertson-Walker spacetime

    Full text link
    We examine the time evolution of the five-dimensional Einstein field equations subjected to a flat, anisotropic Robertson-Walker metric, where the 3D and higher-dimensional scale factors are allowed to dynamically evolve at different rates. By adopting equations of state relating the 3D and higher-dimensional pressures to the density, we obtain an exact expression relating the higher-dimensional scale factor to a function of the 3D scale factor. This relation allows us to write the Friedmann-Robertson-Walker field equations exclusively in terms of the 3D scale factor, thus yielding a set of 4D effective Friedmann-Robertson-Walker field equations. We examine the effective field equations in the general case and obtain an exact expression relating a function of the 3D scale factor to the time. This expression involves a hypergeometric function and cannot, in general, be inverted to yield an analytical expression for the 3D scale factor as a function of time. When the hypergeometric function is expanded for small and large arguments, we obtain a generalized treatment of the dynamical compactification scenario of Mohammedi [Phys.Rev.D 65, 104018 (2002)] and the 5D vacuum solution of Chodos and Detweiler [Phys.Rev.D 21, 2167 (1980)], respectively. By expanding the hypergeometric function near a branch point, we obtain the perturbative solution for the 3D scale factor in the small time regime. This solution exhibits accelerated expansion, which, remarkably, is independent of the value of the 4D equation of state parameter w. This early-time epoch of accelerated expansion arises naturally out of the anisotropic evolution of 5D spacetime when the pressure in the extra dimension is negative and offers a possible alternative to scalar field inflationary theory.Comment: 20 pages, 4 figures, paper format streamlined with main results emphasized and details pushed to appendixes, current version matches that of published versio

    Sunyaev-Zel'dovich Predictions for the Planck Surveyor Satellite using the Hubble Volume Simulations

    Get PDF
    We use the billion-particle Hubble Volume simulations to make statistical predictions for the distribution of galaxy clusters that will be observed by the Planck Surveyor satellite through their effect on the cosmic microwave background -- the Sunyaev-Zel'dovich effect. We utilize the lightcone datasets for both critical density (tauCDM) and flat low-density (LambdaCDM) cosmologies: a `full-sky' survey out to z∌0.5z \sim 0.5, two `octant' datasets out to beyond z=1z=1 and a 100 square degree dataset extending to z∌4z \sim 4. Making simple, but robust, assumptions regarding both the thermodynamic state of the gas and the detection of objects against an unresolved background, we present the expected number of SZ sources as a function of redshift and angular size, and also by flux (for both the thermal and kinetic effects) for 3 of the relevant HFI frequency channels. We confirm the expectation that Planck will detect around 5×1045\times 10^4 clusters, though the exact number is sensitive to the choice of several parameters including the baryon fraction, and also to the cluster density profile, so that either cosmology may predict more clusters. We also find that the majority of detected sources should be at z<1.5z<1.5, and we estimate that around one per cent of clusters will be spatially resolved by Planck, though this has a large uncertainty.Comment: 11 pages LaTeX file with six figures incorporated, using mn.st

    Power Spectrum in Krein Space Quantization

    Full text link
    The power spectrum of scalar field and space-time metric perturbations produced in the process of inflation of universe, have been presented in this paper by an alternative approach to field quantization namely, Krein space quantization [1,2]. Auxiliary negative norm states, the modes of which do not interact with the physical world, have been utilized in this method. Presence of negative norm states play the role of an automatic renormalization device for the theory.Comment: 8 pages, appear in Int. J. Theor. Phy

    Bayesian analysis of Friedmannless cosmologies

    Full text link
    Assuming only a homogeneous and isotropic universe and using both the 'Gold' Supernova Type Ia sample of Riess et al. and the results from the Supernova Legacy Survey, we calculate the Bayesian evidence of a range of different parameterizations of the deceleration parameter. We consider both spatially flat and curved models. Our results show that although there is strong evidence in the data for an accelerating universe, there is little evidence that the deceleration parameter varies with redshift.Comment: 7 pages, 3 figure
    • 

    corecore