We examine the time evolution of the five-dimensional Einstein field
equations subjected to a flat, anisotropic Robertson-Walker metric, where the
3D and higher-dimensional scale factors are allowed to dynamically evolve at
different rates. By adopting equations of state relating the 3D and
higher-dimensional pressures to the density, we obtain an exact expression
relating the higher-dimensional scale factor to a function of the 3D scale
factor. This relation allows us to write the Friedmann-Robertson-Walker field
equations exclusively in terms of the 3D scale factor, thus yielding a set of
4D effective Friedmann-Robertson-Walker field equations. We examine the
effective field equations in the general case and obtain an exact expression
relating a function of the 3D scale factor to the time. This expression
involves a hypergeometric function and cannot, in general, be inverted to yield
an analytical expression for the 3D scale factor as a function of time. When
the hypergeometric function is expanded for small and large arguments, we
obtain a generalized treatment of the dynamical compactification scenario of
Mohammedi [Phys.Rev.D 65, 104018 (2002)] and the 5D vacuum solution of Chodos
and Detweiler [Phys.Rev.D 21, 2167 (1980)], respectively. By expanding the
hypergeometric function near a branch point, we obtain the perturbative
solution for the 3D scale factor in the small time regime. This solution
exhibits accelerated expansion, which, remarkably, is independent of the value
of the 4D equation of state parameter w. This early-time epoch of accelerated
expansion arises naturally out of the anisotropic evolution of 5D spacetime
when the pressure in the extra dimension is negative and offers a possible
alternative to scalar field inflationary theory.Comment: 20 pages, 4 figures, paper format streamlined with main results
emphasized and details pushed to appendixes, current version matches that of
published versio