1,591 research outputs found

    Observational constraints on braneworld chaotic inflation

    Get PDF
    We examine observational constraints on chaotic inflation models in the Randall-Sundrum Type II braneworld. If inflation takes place in the high-energy regime, the perturbations produced by the quadratic potential are further from scale-invariance than in the standard cosmology, in the quartic case more or less unchanged, while for potentials of greater exponent the trend is reversed. We test these predictions against a data compilation including the WMAP measurements of microwave anisotropies and the 2dF galaxy power spectrum. While in the standard cosmology the quartic potential is at the border of what the data allow and all higher powers excluded, we find that in the high-energy regime of braneworld inflation even the quadratic case is under strong observational pressure. We also investigate the intermediate regime where the brane tension is comparable to the inflationary energy scale, where the deviations from scale-invariance prove to be greater.Comment: 5 pages RevTeX4 file with three figures incorporated. Minor changes to match version accepted by Physical Review

    Is there an imprint of Planck scale physics on inflationary cosmology?

    Get PDF
    We study the effects of the trans-Planckian dispersion relation on the spectrum of the primordial density perturbations during inflation. In contrast to the earlier analyses, we do not assume any specific form of the dispersion relation and allow the initial state of the field to be arbitrary. We obtain the spectrum of vacuum fluctuations of the quantum field by considering a scalar field satisfying the linear wave equation with higher spatial derivative terms propagating in the de Sitter space-time. We show that the power spectrum does not strongly depend on the dispersion relation and that the form of the dispersion relation does not play a significant role in obtaining the corrections to the scale invariant spectrum. We also show that the signatures of the deviations from the flat scale-invariant spectrum from the CMBR observations due to quantum gravitational effects cannot be differentiated from the standard inflationary scenario with an arbitrary initial state.Comment: 6 pages, uses RevTex4; References added; Final versio

    Constraints in the Context of Induced-gravity Inflation

    Full text link
    Constraints on the required flatness of the scalar potential V(ϕ)V(\phi) for a cousin-model to extended inflation are studied. It is shown that, unlike earlier results, Induced-gravity Inflation can lead to successful inflation with a very simple lagrangian and λ106\lambda \sim 10^{-6}, rather than 101510^{-15} as previously reported. A second order phase transition further enables this model to escape the \lq big bubble' problem of extended inflation, while retaining the latter's motivations based on the low-energy effective lagrangians of supergravity, superstring, and Kaluza-Klein theories.Comment: 19 pp; 3 figures (not included -- available from author). Plain LaTeX. In press in Physical Review

    False Vacuum Inflation with a Quartic Potential

    Get PDF
    We consider a variant of Hybrid Inflation, where inflation is driven by two interacting scalar fields, one of which has a `Mexican hat' potential and the other a quartic potential. Given the appropriate initial conditions one of the fields can be trapped in a false vacuum state, supported by couplings to the other field. The energy of this vacuum can be used to drive inflation, which ends when the vacuum decays to one of its true minima. Depending on parameters, it is possible for inflation to proceed via two separate epochs, with the potential temporarily steepening sufficiently to suspend inflation. We use numerical simulations to analyse the possibilities, and emphasise the shortcomings of the slow-roll approximation for analysing this scenario. We also calculate the density perturbations produced, which can have a spectral index greater than one.Comment: 10 pages, RevTeX 3.0, no figure

    Extended Inflation with a Curvature-Coupled Inflaton

    Full text link
    We examine extended inflation models enhanced by the addition of a coupling between the inflaton field and the space-time curvature. We examine two types of model, where the underlying inflaton potential takes on second-order and first-order form respectively. One aim is to provide models which satisfy the solar system constraints on the Brans--Dicke parameter ω\omega. This constraint has proven very problematic in previous extended inflation models, and we find circumstances where it can be successfully evaded, though the constraint must be carefully assessed in our model and can be much stronger than the usual ω>500\omega > 500. In the simplest versions of the model, one may avoid the need to introduce a mass for the Brans--Dicke field in order to ensure that it takes on the correct value at the present epoch, as seems to be required in hyperextended inflation. We also briefly discuss aspects of the formation of topological defects in the inflaton field itself.Comment: 24 pages, LaTeX (no figures), to appear, Physical Review D, mishandling of the solar system constraint on extended gravity theories corrected, SUSSEX-AST 93/6-

    Can the Gravitational Wave Background from Inflation be Detected Locally?

    Full text link
    The Cosmic Background Explorer (COBE) detection of microwave background anisotropies may contain a component due to gravitational waves generated by inflation. It is shown that the gravitational waves from inflation might be seen using `beam-in-space' detectors, but not the Laser Interferometer Gravity Wave Observatory (LIGO). The central conclusion, dependent only on weak assumptions regarding the physics of inflation, is a surprising one. The larger the component of the COBE signal due to gravitational waves, the {\em smaller} the expected local gravitational wave signal.Comment: 8 pages, standard LaTeX (no figures), SUSSEX-AST 93/7-

    Anisotropic evolution of 5D Friedmann-Robertson-Walker spacetime

    Full text link
    We examine the time evolution of the five-dimensional Einstein field equations subjected to a flat, anisotropic Robertson-Walker metric, where the 3D and higher-dimensional scale factors are allowed to dynamically evolve at different rates. By adopting equations of state relating the 3D and higher-dimensional pressures to the density, we obtain an exact expression relating the higher-dimensional scale factor to a function of the 3D scale factor. This relation allows us to write the Friedmann-Robertson-Walker field equations exclusively in terms of the 3D scale factor, thus yielding a set of 4D effective Friedmann-Robertson-Walker field equations. We examine the effective field equations in the general case and obtain an exact expression relating a function of the 3D scale factor to the time. This expression involves a hypergeometric function and cannot, in general, be inverted to yield an analytical expression for the 3D scale factor as a function of time. When the hypergeometric function is expanded for small and large arguments, we obtain a generalized treatment of the dynamical compactification scenario of Mohammedi [Phys.Rev.D 65, 104018 (2002)] and the 5D vacuum solution of Chodos and Detweiler [Phys.Rev.D 21, 2167 (1980)], respectively. By expanding the hypergeometric function near a branch point, we obtain the perturbative solution for the 3D scale factor in the small time regime. This solution exhibits accelerated expansion, which, remarkably, is independent of the value of the 4D equation of state parameter w. This early-time epoch of accelerated expansion arises naturally out of the anisotropic evolution of 5D spacetime when the pressure in the extra dimension is negative and offers a possible alternative to scalar field inflationary theory.Comment: 20 pages, 4 figures, paper format streamlined with main results emphasized and details pushed to appendixes, current version matches that of published versio

    Improved WKB analysis of Slow-Roll Inflation

    Full text link
    We extend the WKB method for the computation of cosmological perturbations during inflation beyond leading order and provide the power spectra of scalar and tensor perturbations to second order in the slow-roll parameters. Our method does not require that the slow-roll parameters be constant. Although leading and next-to-leading results in the slow-roll parameters depend on the approximation technique used in the computation, we find that the inflationary theoretical predictions obtained may reach the accuracy required by planned observations. In two technical appendices, we compare our techniques and results with previous findings.Comment: REVTeX 4, 13 pages, no figures, final version to appear in Phys. Rev.

    Constraints on Primordial Nongaussiantiy from the High-Redshift Cluster MS1054--03

    Get PDF
    The implications of the massive, X-ray selected cluster of galaxies MS1054--03 at z=0.83z=0.83 are discussed in light of the hypothesis that the primordial density fluctuations may be nongaussian. We generalize the Press-Schechter (PS) formalism to the nongaussian case, and calculate the likelihood that a cluster as massive as MS1054 would appear in the EMSS. The probability of finding an MS1054-like cluster depends only on \omegam and the extent of primordial nongaussianity. We quantify the latter by adopting a specific functional form for the PDF, denoted ψλ,\psi_\lambda, which tends to Gaussianity for λ1,\lambda\gg 1, and show how λ\lambda is related to the more familiar statistic T,T, the probability of 3σ\ge 3\sigma fluctuations for a given PDF relative to a Gaussian. We find that Gaussian initial density fluctuations are consistent with the data on MS1054 only if \omegam\simlt 0.2. For \omegam\ge 0.25 a significant degree of nongaussianity is required, unless the mass of MS1054 has been substantially overestimated by X-ray and weak lensing data. The required amount of nongaussianity is a rapidly increasing function of \omegam for 0.25 \le \omegam \le 0.45, with λ1\lambda \le 1 (T \simgt 7) at the upper end of this range. For a fiducial \omegam=0.3, \omegal=0.7 universe, favored by several lines of evidence we obtain an upper limit λ10,\lambda \le 10, corresponding to a T3.T\ge 3. This finding is consistent with the conclusions of Koyama, Soda, & Taruya (1999), who applied the generalized PS formalism to low (z\simlt 0.1) and intermediate (z\simlt 0.6) redshift cluster data sets.Comment: 15 pages, 11 figures, submitted to the Astrophysical Journal, uses emulateapj.st

    The dearth of halo dwarf galaxies: is there power on short scales?

    Get PDF
    N-body simulations of structure formation with scale-invariant primordial perturbations show significantly more virialized objects of dwarf-galaxy mass in a typical galactic halo than are observed around the Milky Way. We show that the dearth of observed dwarf galaxies could be explained by a dramatic downturn in the power spectrum at small distance scales. This suppression of small-scale power might also help mitigate the disagreement between cuspy simulated halos and smooth observed halos, while remaining consistent with Lyman-alpha-forest constraints on small-scale power. Such a spectrum could arise in inflationary models with broken scale invariance.Comment: 5 pages LaTeX, 3 figure
    corecore