11 research outputs found

    A Correlation between the Emission Intensity of Self-Assembled Germanium Islands and the Quality Factor of Silicon Photonic Crystal Nanocavities

    Get PDF
    We present a comparative micro-photoluminescence study of the emission intensity of self-assembled germanium islands coupled to the resonator mode of two-dimensional silicon photonic crystal defect nanocavities. The emission intensity is investigated for cavity modes of L3 and Hexapole cavities with different cavity quality factors. For each of these cavities many nominally identical samples are probed to obtain reliable statistics. As the quality factor increases we observe a clear decrease in the average mode emission intensity recorded under comparable optical pumping conditions. This clear experimentally observed trend is compared with simulations based on a dissipative master equation approach that describes a cavity weakly coupled to an ensemble of emitters. We obtain evidence that reabsorption of photons emitted into the cavity mode is responsible for the observed trend. In combination with the observation of cavity linewidth broadening in power dependent measurements, we conclude that free carrier absorption is the limiting effect for the cavity mediated light enhancement under conditions of strong pumping.Comment: 8 pages, 5 figure

    Emitters of NN-photon bundles

    Get PDF
    We propose a scheme based on the coherent excitation of a two-level system in a cavity to generate an ultrabright CW and focused source of quantum light that comes in groups (bundles) of NN photons, for an integer NN tunable with the frequency of the exciting laser. We define a new quantity, the \emph{purity} of NN-photon emission, to describe the percentage of photons emitted in bundles, thus bypassing the limitations of Glauber correlation functions. We focus on the case 1≀N≀31\le N\le3 and show that close to 100% of two-photon emission and 90% of three-photon emission is within reach of state of the art cavity QED samples. The statistics of the bundles emission shows that various regimes---from NN-photon lasing to NN-photon guns---can be realized. This is evidenced through generalized correlation functions that extend the standard definitions to the multi-photon level.Comment: Introduce the n-th order N-photon correlation functions. Reorganized to emphasize the N-photon emitter, now extended to the antibunching regime, rather than only coherent emission as previsoul

    On-Chip Generation, Routing, and Detection of Resonance Fluorescence

    No full text
    Quantum optical circuits can be used to generate, manipulate, and exploit nonclassical states of light to push semiconductor based photonic information technologies to the quantum limit. Here, we report the on-chip generation of quantum light from individual, resonantly excited self-assembled InGaAs quantum dots, efficient routing over length scales ≄1 mm via GaAs ridge waveguides, and in situ detection using evanescently coupled integrated NbN superconducting single photon detectors fabricated on the same chip. By temporally filtering the time-resolved luminescence signal stemming from single quantum dots we use the quantum optical circuit to perform time-resolved excitation spectroscopy on single dots and demonstrate resonance fluorescence with a line-width of 10 ± 1 ÎŒeV; key elements needed for the use of single photons in prototypical quantum photonic circuits

    Monolithically Integrated High‑ÎČ Nanowire Lasers on Silicon

    No full text
    Reliable technologies for the monolithic integration of lasers onto silicon represent the holy grail for chip-level optical interconnects. In this context, nanowires (NWs) fabricated using III–V semiconductors are of strong interest since they can be grown site-selectively on silicon using conventional epitaxial approaches. Their unique one-dimensional structure and high refractive index naturally facilitate low loss optical waveguiding and optical recirculation in the active NW-core region. However, lasing from NWs on silicon has not been achieved to date, due to the poor modal reflectivity at the NW-silicon interface. We demonstrate how, by inserting a tailored dielectric interlayer at the NW-Si interface, low-threshold single mode lasing can be achieved in vertical-cavity GaAs–AlGaAs core–shell NW lasers on silicon as measured at low temperature. By exploring the output characteristics along a detection direction parallel to the NW-axis, we measure very high spontaneous emission factors comparable to nanocavity lasers (ÎČ = 0.2) and achieve ultralow threshold pump energies ≀11 pJ/pulse. Analysis of the input–output characteristics of the NW lasers and the power dependence of the lasing emission line width demonstrate the potential for high pulsation rates ≄250 GHz. Such highly efficient nanolasers grown monolithically on silicon are highly promising for the realization of chip-level optical interconnects
    corecore