1,966 research outputs found

    Identification of an interchromosomal compartment by polymerization of nuclear-targeted vimentin

    Get PDF
    A number of structural and functional subnuclear compartments have been described, including regions exclusive of chromosomes previously hypothesized to form a reactive nuclear space. We have now explored this accessible nuclear space and interchromosomal nucleoplasmic domains experimentally using Xenopus vimentin engineered to contain a nuclear localization signal (NLS-vimentin). In stably transfected human cells incubated at 37°C, the NLS-vimentin formed a restricted number of intranuclear speckles. At 28°C, the optimal temperature for assembly of the amphibian protein, NLSvimentin progressively extended with time out from the speckles into strictly orientated intranuclear filamentous arrays. This enabled us to observe the development of a system of interconnecting channel-like areas. Quantitative analysis based on 3-D imaging microscopy revealed that these arrays were localized almost exclusively outside of chromosome territories. During mitosis the filaments disassembled and dispersed throughout the cytoplasm, while in anaphase-telophase the vimentin was recruited back into the nucleus and reassembled into filaments at the chromosome surfaces, in distributions virtually identical to those observed in the previous interphase. The filaments also colocalized with specific nuclear RNAs, coiled bodies and PML bodies, all situated outside of chromosome territories, thereby interlinking these structures. This strongly implies that these nuclear entities coexist in the same interconnected nuclear compartment. The assembling NLS-vimentin is restricted to and can be used to delineate, at least in part, the formerly proposed reticular interchromosomal domain compartment (ICD). The properties of NLS-vimentin make it an excellent tool for performing structural and functional studies on this compartment

    The Increasing Diversity of America\u27s Youth

    Get PDF
    This brief documents how unfolding demographic forces have placed today’s children and youth at the forefront of America’s new racial and ethnic diversity. Authors Kenneth M. Johnson, Andrew Schaefer, Daniel T. Lichter, and Luke T. Rogers discuss how the rapidly changing racial and ethnic composition of the youth population has important implications for intergroup relations, ethnic identities, and electoral politics. They report that diversity is increasing among America’s youth because there are more minority children and fewer non-Hispanic white children. Minority births exceeded non-Hispanic white births for the first time in U.S. history in 2011 according to Census Bureau estimates. Both the declining number of non-Hispanic white women of prime child-bearing and growing numbers of minority women contributed to this change as did differential fertility rates. The largest gains in child diversity between 2000 and 2012 were in suburban and smaller metropolitan areas. Yet, child diversity is geographically uneven, with minimal diversity in some areas of the country and significant diversity in other areas. They conclude that natural population increase—particularly fertility rates—will continue to reshape the racial and ethnic mix of the country, and this change will be reflected first among the nation’s youngest residents

    Viscous Cross-waves: An Analytical Treatment

    Get PDF
    Viscous effects on the excitation of cross‐waves in a semi‐infinite box of finite depth and width are considered. A formalism using matched asymptotic expansions and an improved method of computing the solvability condition is used to derive the relative contributions of the free‐surface, sidewall, bottom, and wavemaker viscous boundary layers. This analysis yields an expression for the damping coefficient previously incorporated on heuristic grounds. In addition, three new contributions are found: a viscous detuning of the resonant frequency, a slow spatial variation in the coupling to the progressive wave, and a viscous correction to the wavemaker boundary condition. The wavemaker boundary condition breaks the symmetry of the linear neutral stability curve at leading order for many geometries of experimental interest

    Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries

    Get PDF
    The nuclear topography of splicing snRNPs, mRNA transcripts and chromosome domains in various mammalian cell types are described. The visualization of splicing snRNPs, defined by the Sm antigen, and coiled bodies, revealed distinctly different distribution patterns in these cell types. Heat shock experiments confirmed that the distribution patterns also depend on physiological parameters. Using a combination of fluorescencein situ hybridization and immunodetection protocols, individual chromosome domains were visualized simultaneously with the Sm antigen or the transcript of an integrated human papilloma virus genome. Three-dimensional analysis of fluorescence-stained target regions was performed by confocal laser scanning microscopy. RNA transcripts and components of the splicing machinery were found to be generally excluded from the interior of the territories occupied by the individual chromosomes. Based on these findings we present a model for the functional compartmentalization of the cell nucleus. According to this model the space between chromosome domains, including the surface areas of these domains, defines a three-dimensional network-like compartment, termed the interchromosome domain (ICD) compartment, in which transcription and splicing of mRNA occurs

    A strategy for the characterization of minute chromosome rearrangements using multiple color fluorescence in situ hybridization with chromosome-specific DNA libraries and YAC clones

    Get PDF
    The identification of marker chromosomes in clinical and tumor cytogenetics by chromosome banding analysis can create problems. In this study, we present a strategy to define minute chromosomal rearrangements by multicolor fluorescence in situ hybridization (FISH) with whole chromosome painting probes derived from chromosome-specific DNA libraries and Alu-polymerase chain reaction (PCR) products of various region-specific yeast artificial chromosome (YAC) clones. To demonstrate the usefulness of this strategy for the characterization of chromosome rearrangements unidentifiable by banding techniques, an 8p+ marker chromosome with two extra bands present in the karyotype of a child with multiple anomalies, malformations, and severe mental retardation was investigated. A series of seven-color FISH experiments with sets of fluorochrome-labeled DNA library probes from flow-sorted chromosomes demonstrated that the additional segment on 8p+ was derived from chromosome 6. For a more detailed characterization of the marker chromosome, three-color FISH experiments with library probes specific to chromosomes 6 and 8 were performed in combination with newly established telomeric and subtelomeric YAC clones from 6q25, 6p23, and 8p23. These experiments demonstrated a trisomy 6pter6p22 and a monosomy 8pter8p23 in the patient. The present limitations for a broad application of this strategy and its possible improvements are discusse

    Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes

    Get PDF
    Chromosome aberrations in two glioma cell lines were analyzed using biotinylated DNA library probes that specifically decorate chromosomes 1, 4, 7, 18 and 22 from pter to qter. Numerical changes, deletions and rearrangements of these chromosomes were radily visualized in metaphase spreads, as well as in early prophase and interphase nuclei. Complete chromosomes, deleted chromosomes and segments of translocated chromosomes were rapidly delineated in very complex karyotypes. Simultaneous hybridizations with additional subregional probes were used to further define aberrant chromosomes. Digital image analysis was used to quantitate the total complement of specific chromosomal DNAs in individual metaphase and interphase cells of each cell line. In spite of the fact that both glioma lines have been passaged in vitro for many years, an under-representation of chromosome 22 and an over-representation of chromosome 7 (specifically 7p) were observed. These observations agree with previous studies on gliomas. In addition, sequences of chromosome 4 were also found to be under-represented, especially in TC 593. These analyses indicate the power of these methods for pinpointing chromosome segments that are altered in specific types of tumors

    Comparative chromosome band mapping in primates byin situ suppression hybridization of band specific DNA microlibraries

    Get PDF
    A DNA-library established from microdissected bands 8q23 to 8q24.1 of normal human chromosomes 8 (Lüdecke et al., 1989) was used as a probe for chromosomal in situ suppression (CISS-) hybridization to metaphase chromosomes of man and primates including Hylobates lar and Macaca fuscata. Comparative band mapping as first applied in this study shows the specific visualization of a single subchromosomal region in all three species and thus demonstrates that synteny of the bulk sequences of a specific human chromosome subregion has been conserved for more than 20 million years

    Molecular cytogenetic delineation of deletions and translocations involving chromosome band 7q22 in myeloid leukemias

    Get PDF
    Loss of chromosome 7 (-7) or deletion of its long arm (7q-) are recurring chromosome abnormalities in myeloid disorders, especially in therapy-related myelodysplastic syndrome (t-MDS) and acute myeloid leukemia (t-AML). The association of -7/7q- with myeloid leukemia suggests that these regions contain a novel tumor suppressor gene(s) whose loss of function contributes to leukemic transformation or tumor progression. Based on chromosome banding analysis, two critical regions have been identified: one in band 7q22 and a second in bands 7q32-q35. We analyzed bone marrow and blood samples from 21 patients with myeloid leukemia (chronic myeloid leukemia, n = 2; de novo MDS, n = 4; de novo AML, n = 13: t-AML, n = 2) that on chromosome banding analysis exhibited deletions (n = 19) or reciprocal translocations (n = 2) of band 7q22 using fluorescence in situ hybridization. As probes, we used Alu-polymerase chain reaction products from 22 yeast artificial chromosome (YAC) clones that span chromosome bends 7q21.1-q32, including representative clones from a panel of YACs recognizing a contiguous genomic DNA fragment of 5 to 6 Mb in band 7q22. In the 19 cases with deletions, we identified two distinct commonly deleted regions: one region within band 7q22 was defined by the two CML cases; the second region encompassed a distal part of band 7q22 and the entire band 7q31 and was defined by the MDS/AML cases. The breakpoint of one of the reciprocal translocations was mapped to 7q21.3, which is centromeric to both of the commonly deleted regions. The breakpoint of the second translocation, which was present in unstimulated bone marrow and phytohemagglutinin-stimulated blood of an MDS patient, was localized to a 400-kb genomic segment in 7q22 within the deletion cluster of the MDS/AML cases. In conclusion, our data show marked heterogeneity of 7q22 deletion and translocation breakpoints in myeloid leukemias, suggesting the existence of more than one pathogenetically relevant gene.link_to_OA_fulltex

    The celebrity entrepreneur on television: profile, politics and power

    Get PDF
    This article examines the rise of the ‘celebrity entrepreneur’ on television through the emergence of the ‘business entertainment format’ and considers the ways in which regular television exposure can be converted into political influence. Within television studies there has been a preoccupation in recent years with how lifestyle and reality formats work to transform ‘ordinary’ people into celebrities. As a result, the contribution of vocationally skilled business professionals to factual entertainment programming has gone almost unnoticed. This article draws on interviews with key media industry professionals and begins by looking at the construction of entrepreneurs as different types of television personalities and how discourses of work, skill and knowledge function in business shows. It then outlines how entrepreneurs can utilize their newly acquired televisual skills to cultivate a wider media profile and secure various forms of political access and influence. Integral to this is the centrality of public relations and media management agencies in shaping media discourses and developing the individual as a ‘brand identity’ that can be used to endorse a range of products or ideas. This has led to policy makers and politicians attempting to mobilize the media profile of celebrity entrepreneurs to reach out and connect with the public on business and enterprise-related issues

    Targeting atypical protein kinase C iota reduces viability in glioblastoma stem-like cells via a notch signaling mechanism

    Get PDF
    In a previous study, Protein Kinase C iota (PRKCI) emerged as an important candidate gene for glioblastoma (GBM) stem-like cell (GSC) survival. Here, we show that PKCι is overexpressed and activated in patient derived GSCs compared with normal neural stem cells and normal brain lysate, and that silencing of PRKCI in GSCs causes apoptosis, along with loss of clonogenicity and reduced proliferation. Notably, PRKCI silencing reduces tumor growth in vivo in a xenograft mouse model. PKCι has been intensively studied as a therapeutic target in non-small cell lung cancer, resulting in the identification of an inhibitor, aurothiomalate (ATM), which disrupts the PKCι/ERK signaling axis. However, we show that, although sensitive to pharmacological inhibition via a pseudosubstrate peptide inhibitor, GSCs are much less sensitive to ATM, suggesting that PKCι acts along a different signaling axis in GSCs. Gene expression profiling of PRKCI-silenced GSCs revealed a novel role of the Notch signaling pathway in PKCι mediated GSC survival. A proximity ligation assay showed that Notch1 and PKCι are in close proximity in GSCs. Targeting PKCι in the context of Notch signaling could be an effective way of attacking the GSC population in GBM
    corecore