2,498 research outputs found

    Correlation effects in electronic structure of PuCoGa5

    Get PDF
    We report on results of the first realistic electronic structure calculations of the Pu-based PuCoGa5 superconductor based on the dynamical mean field theory. We find that dynamical correlations due to the local Coulomb interaction between Pu f-electrons lead to substantial modification of the electronic structure with a narrow peak being formed in vicinity of the Fermi energy, in agreement with the experimental photoemission spectra, and in contrast with the recent calculations within the LDA+U method, where only static electronic correlations have been included. Both Pu and Co contribute in equal footing to the narrow peak on the density of states at the Fermi level, the Co partial density of states being prominently affected by electronic correlations on the Pu sites. The k-resolved spectral density is calculated and the theoretical spectral function resolved extended Van Hove singularity near the Fermi energy. This singularity may lead to enchancement of the magnetic susceptebility and favour d-wave superconductivity

    On evolutionary origin of cancer

    Get PDF
    BACKGROUND: The necessary and sufficient capabilities of cancer cell have been identified. Strikingly, this list does not include one that would seem to be a key property, namely the ability of cancer cells to kill their "host". This is believed to be a self-evident consequence of the other capabilities (e.g., metastasis), although the available evidence suggests a distinct killer function. Taking into account this unlisted property can significantly affect the current paradigm of carcinogenesis. PRESENTATION OF THE HYPOTHESIS: On the assumption that killer function is a key capability of the cancer cell, it is suggested that cancer has evolved as a mechanism of negative selection of mutant alleles of vitally important genes present in population. Similarly to apoptosis, which is an altruistic suicidal act of a damaged cell, cancer is an altruistic suicidal act of an individual who carries dangerous alleles and presents a hazard for genetic stability of the population. From this point of view, apoptosis is not a protection means against cancer as generally believed, but rather they are the first and second lines of defense against genome instability, respectively. TESTING THE HYPOTHESIS: The modern DNA array technology is capable of revealing gene expression profiles responsible for killer function of cancer cell as well as those specific targets in the body that are most strongly affected by the tumor growth. IMPLICATIONS OF THE HYPOTHESIS: This hypothesis suggests new avenues of cancer research as well as principally new therapeutic strategies

    Electronic correlations and competing orders in multiorbital dimers: a cluster DMFT study

    Full text link
    We investigate the violation of the first Hund's rule in 4dd and 5dd transition metal oxides that form solids of dimers. Bonding states within these dimers reduce the magnetization of such materials. We parametrize the dimer formation with realistic hopping parameters and find not only regimes, where the system behaves as a Fermi liquid or as a Peierls insulator, but also strongly correlated regions due to Hund's coupling and its competition with the dimer formation. The electronic structure is investigated using the cluster dynamical mean-field theory for a dimer in the two-plane Bethe lattice with two orbitals per site and 3/83/8-filling, that is three electrons per dimer. It reveals dimer-antiferromagnetic order of a high-spin (double exchange) state and a low-spin (molecular orbital) state. At the crossover region we observe the suppression of long-range magnetic order, fluctuation enhancement and renormalization of electron masses. At certain interaction strengths the system becomes an incoherent antiferromagnetic metal with well defined local moments.Comment: 11 pages, 10 figure

    Correlated band theory of spin and orbital contributions to Dzyaloshinskii-Moriya interactions

    Get PDF
    A new approach for calculations of Dzyaloshinskii-Moriya interactions in molecules and crystals is proposed. It is based on the exact perturbation expansion of total energy of weak ferromagnets in the canting angle with the only assumption of local Hubbard-type interactions. This scheme leads to a simple and transparent analytical expression for Dzyaloshinskii-Moriya vector with a natural separation into spin and orbital contributions. The main problem was transferred to calculations of effective tight-binding parameters in the properly chosen basis including spin-orbit coupling. Test calculations for La2_2CuO4_4 give the value of canting angle in a good agreement with experimental data.Comment: 4 pages, 1 figur

    Correlated adatom trimer on metal surface: A continuous time quantum Monte Carlo study

    Full text link
    The problem of three interacting Kondo impurities is solved within a numerically exact continuous time quantum Monte Carlo scheme. A suppression of the Kondo resonance by interatomic exchange interactions for different cluster geometries is investigated. It is shown that a drastic difference between the Heisenberg and Ising cases appears for antiferromagnetically coupled adatoms. The effects of magnetic frustrations in the adatom trimer are investigated, and possible connections with available experimental data are discussed.Comment: 4 pages, 4 figure

    Local impurity effects in superconducting graphene

    Full text link
    We study the effect of impurities in superconducting graphene and discuss their influence on the local electronic properties. In particular, we consider the case of magnetic and non-magnetic impurities being either strongly localized or acting as a potential averaged over one unit cell. The spin dependent local density of states is calculated and possibilities for visualizing impurities by means of scanning tunneling experiments is pointed out. A possibility of identifying magnetic scatters even by non spin-polarized scanning tunneling spectroscopy is explained.Comment: 4 pages, 4 figure

    Exact diagonalization solver for the extended dynamical mean-field theory

    Full text link
    We present an efficient exact diagonalization scheme for the extended dynamical mean-field theory and apply it to the extended Hubbard model on the square lattice with nonlocal charge-charge interactions. Our solver reproduces the phase diagram of this approximation with good accuracy. Details on the numerical treatment of the large Hilbert space of the auxiliary Holstein-Anderson impurity problem are provided. Benchmarks with a numerically exact strong-coupling continuous-time quantum-Monte Carlo solver show better convergence behavior of the exact diagonalization in the deep insulator. Special attention is given to possible effects due to the discretization of the bosonic bath. We discuss the quality of real axis spectra and address the question of screening in the Mott insulator within extended dynamical mean-field theory.Comment: 12 pages, 8 figure

    Renormalized spectral function for Co adatom on the Pt(111) surface

    Full text link
    The strong Coulomb correlations effects in the electronic structure of magnetic Co adatom on the Pt(111) surface have been investigated. Using a realistic five d-orbital impurity Anderson model at low temperatures with parameters determined from first-principles calculations we found a striking change of the electronic structure in comparison with the LDA results. The spectral function calculated with full rotationally invariant Coulomb interaction is in good agreement with the quasiparticle region of the STM conductance spectrum. Using the calculated spin-spin correlation functions we have analyzed the formation of the magnetic moments of the Co impurity orbitals.Comment: 4 pages, 4 figure

    Continuous Time Quantum Monte Carlo method for fermions

    Get PDF
    We present numerically exact continuous-time Quantum Monte Carlo algorithm for fermions with a general non-local in space-time interaction. The new determinantal grand-canonical scheme is based on a stochastic series expansion for the partition function in the interaction representation. The method is particularly applicable for multi-band time-dependent correlations since it does not invoke the Hubbard-Stratonovich transformation. The test calculations for exactly solvable models as well results for the Green function and for the time-dependent susceptibility of the multi-band super-symmetric model with a spin-flip interaction are discussed.Comment: 10 pages, 7 Figure

    Hydrogen on graphene: Electronic structure, total energy, structural distortions, and magnetism from first-principles calculations

    Get PDF
    Density functional calculations of electronic structure, total energy, structural distortions, and magnetism for hydrogenated single-layer, bilayer, and multi-layer graphene are performed. It is found that hydrogen-induced magnetism can survives only at very low concentrations of hydrogen (single-atom regime) whereas hydrogen pairs with optimized structure are usually nonmagnetic. Chemisorption energy as a function of hydrogen concentration is calculated, as well as energy barriers for hydrogen binding and release. The results confirm that graphene can be perspective material for hydrogen storage. Difference between hydrogenation of graphene, nanotubes, and bulk graphite is discussed.Comment: 8 pages 8 figures (accepted to Phys. Rev. B
    corecore