3,845 research outputs found

    Non-local Coulomb interactions and metal-insulator transition in Ti2_2O3_3: a cluster LDA+DMFT approach

    Get PDF
    We present an ab initio quantum theory of the metal-insulator transition in Ti2_2O3_3. The recently developed cluster LDA+DMFT scheme is applied to describe the many-body features of this compound. The conventional single site DMFT cannot reproduce a low temperature insulating phase for any reasonable values of the Coulomb interaction. We show that the non-local Coulomb interactions and the strong chemical bonding within Ti-Ti pair is the origin of the small gap insulating ground state of Ti2_2O3_3

    Electronic structure and spectral properties of Am, Cm and Bk: Charge density self-consistent LDA+HIA calculations in FP-LAPW basis

    Full text link
    We provide a straightforward and numerically efficient procedure to perform local density approximation + Hubbard I (LDA+HIA) calculations, including self-consistency over the charge density, within the full potential linearized augmented plane wave (FP-LAPW) method. This implementation is all-electron, includes spin-orbit interaction, and makes no shape approximations for the charge density. The method is applied to calculate selected heavy actinides in the paramagnetic phase. The electronic structure and spectral properties of Am and Cm metals obtained are in agreement with previous dynamical mean-field theory (LDA+DMFT) calculations and with available experimental data. We point out that the charge density self-consistent LDA+HIA calculations predict the ff charge on Bk to exceed the atomic integer f8f^8 value by 0.22.Comment: 8 pages, 1 figur

    Slave-rotor mean field theories of strongly correlated systems and the Mott transition in finite dimensions

    Full text link
    The multiorbital Hubbard model is expressed in terms of quantum phase variables (``slave rotors'') conjugate to the local charge, and of auxiliary fermions, providing an economical representation of the Hilbert space of strongly correlated systems. When the phase variables are treated in a local mean-field manner, similar results to the dynamical mean-field theory are obtained, namely a Brinkman-Rice transition at commensurate fillings together with a ``preformed'' Mott gap in the single-particle density of states. The slave- rotor formalism allows to go beyond the local description and take into account spatial correlations, following an analogy to the superfluid-insulator transition of bosonic systems. We find that the divergence of the effective mass at the metal- insulator transition is suppressed by short range magnetic correlations in finite-dimensional systems. Furthermore, the strict separation of energy scales between the Fermi- liquid coherence scale and the Mott gap found in the local picture, holds only approximately in finite dimensions, due to the existence of low-energy collective modes related to zero-sound.Comment: 16 pages, 12 figure

    Local magnetic moments in iron and nickel at ambient and Earth's core conditions

    Full text link
    Some Bravais lattices have a particular geometry that can slow down the motion of Bloch electrons by pre-localization due to the band-structure properties. Another known source of electronic localization in solids is the Coulomb repulsion in partially filled d- or f-orbitals, which leads to the formation of local magnetic moments. The combination of these two effects is usually considered of little relevance to strongly correlated materials. Here we show that it represents, instead, the underlying physical mechanism in two of the most important ferromagnets: nickel and iron. In nickel, the van Hove singularity has an unexpected impact on the magnetism. As a result, the electron-electron scattering rate is linear in temperature, in violation of the conventional Landau theory of metals. This is true even at Earth's core pressures, at which iron is instead a good Fermi liquid. The importance of nickel in models of geomagnetism may have therefore to be reconsidered.Comment: Supplementary Information available at https://www.nature.com/articles/ncomms16062#supplementary-informatio

    Double Counting in LDA+DMFT - The Example of NiO

    Full text link
    An intrinsic issue of the LDA+DMFT approach is the so called double counting of interaction terms. How to choose the double-counting potential in a manner that is both physically sound and consistent is unknown. We have conducted an extensive study of the charge transfer system NiO in the LDA+DMFT framework using quantum Monte Carlo and exact diagonalization as impurity solvers. By explicitly treating the double-counting correction as an adjustable parameter we systematically investigated the effects of different choices for the double counting on the spectral function. Different methods for fixing the double counting can drive the result from Mott insulating to almost metallic. We propose a reasonable scheme for the determination of double-counting corrections for insulating systems.Comment: 7 pages, 6 figure

    Electronic Structure and Magnetic Properties of Solids

    Full text link
    We review basic computational techniques for simulations of various magnetic properties of solids. Several applications to compute magnetic anisotropy energy, spin wave spectra, magnetic susceptibilities and temperature dependent magnetisations for a number of real systems are presented for illustrative purposes.Comment: Review article; To appear in Journal of Computational Crystallograph

    Non-perturbative JpdJ_{pd} model and ferromagnetism in dilute magnets

    Full text link
    We calculate magnetic couplings in the JpdJ_{pd} model for dilute magnets, in order both to identify the relevant parameters which control ferromagnetism and also to bridge the gap between first principle calculations and model approaches. The magnetic exchange interactions are calculated non-perturbatively and disorder in the configuration of impurities is treated exacly, allowing us to test the validity of effective medium theories. Results differ qualitatively from those of weak coupling. In contrast to mean field theory, increasing JpdJ_{pd} may not favor high Curie temperatures: TCT_C scales primarily with the bandwidth. High temperature ferromagnetism at small dilutions is associated with resonant structure in the p-band. Comparison to diluted magnetic semiconductors indicate that Ga(Mn)As has such a resonant structure and thus this material is already close to optimality.Comment: 4 pages, 4 Figure

    An dynamical-mean-field-theory investigation of specific heat and electronic structure of α\alpha and δ\delta-plutonium

    Get PDF
    We have carried out a comparative study of the electronic specific heat and electronic structure of α\alpha and δ\delta-plutonium using dynmical mean field theory (DMFT). We use the perturbative T-matrix and fluctuating exchange (T-matrix FLEX) as a quantum impurity solver. We considered two different physical pictures of plutonoium. In the first, 5f5+5{f^5}+, the perturbative treatment of electronic correlations has been carried out around the non-magnetic (LDA) Hamiltonian, which results in an f occupation around a bit above nf=5n_f = 5 . In the second, 5f65{f^6}-, plutonium is viewed as being close to an 5f65{f^6} configuration, and perturbation theory is carried out around the (LDA+U) starting point bit below nf=6n_f = 6 . In the latter case the electronic specific heat coefficient γ\gamma attains a smaller value in γ\gamma-Pu than in α\alpha-Pu, in contradiction to experiment, while in the former case our calculations reproduce the experimentally observed large increase of γ\gamma in δ\delta-Pu as compared to the α\alpha phase. This enhancement of the electronic specific heat coefficient in δ\delta-Pu is due to strong electronic correlations present in this phase, which cause a substantial increase of the electronic effective mass, and high density of states at EFE_F. The densities of states of α\alpha and δ\delta-plutonium obtained starting from the open-shell configuration are also in good agreement with the experimental photoemission spectra.Comment: 6 pages, 3 figure
    corecore