242 research outputs found

    Modelling of chemical reactions in metallurgical processes

    Get PDF
    Since the last three decades, the study of reduction of iron-ore has gained much attention as it is considered a core process for the steel industry. Fluidized bed and moving bed reactors are utilized to reduce the iron-ore efficiently. As reducing agents coal, coke or natural gases are used, which are released as CO2 gas, or sometimes in small amounts as H2O to the environment. The conditions in these reactors are harsh and provide limited accessibility, therefore computational tools are used to investigate them. One such tool is the CFD-DEM method, where the reacting gas species and the governing equations for the gas flow are calculated in the Eulerian (CFD) side, whereas the particle reactions and equation of motion are calculated in the Lagrangian (DEM) side. In the current work, the CFD-DEM method is extended to cover the most dominant types of models for heterogeneous reactions between submerged solids and fluids. One of these models is the Shrinking Particle Model (SPM), which is used to verify the commu- nication framework between the CFD and DEM sides by running preliminary test cases. Another model is the Unreacted Shrinking Core Model (USCM), which is considered as a good model for a reality like iron-ore reduction modelling

    Nonperturbative contributions to the QCD pressure

    Full text link
    We summarize the most important arguments why a perturbative description of finite-temperature QCD is unlikely to be possible and review various well-established approaches to deal with this problem. Then, using a recently proposed method, we investigate nonperturbative contributions to the QCD pressure and other observables (like energy, anomaly and bulk viscosity) obtained by imposing a functional cutoff at the Gribov horizon. Finally, we discuss how such contributions fit into the picture of consecutive effective theories, as proposed by Braaten and Nieto, and give an outline of the next steps necessary to improve this type of calculation.Comment: 15 pages, 13 figures, uses xcolor.sty; in v2 quality of some figures has been improved, discussion of other approaches has been extende

    Superfluid 4He dynamics beyond quasiparticle excitations

    Get PDF
    The dynamics of superfluid 4He at and above the Landau quasiparticle regime is investigated by high precision inelastic neutron scattering measurements of the dynamic structure factor. A highly structured response is observed above the familiar phonon-maxon-roton spectrum, characterized by sharp thresholds for phonon-phonon, maxon-roton and roton-roton coupling processes. The experimental dynamic structure factor is compared to the calculation of the same physical quantity by a Dynamic Many-body theory including three-phonon processes self-consistently. The theory is found to provide a quantitative description of the dynamics of the correlated bosons for energies up to about three times that of the Landau quasiparticles.Comment: 5 pages, 3 figure

    Gravitomagnetism, clocks and geometry

    Get PDF
    New techniques to evaluate the clock effect using light are described. These are based on the flatness of the cylindrical surface containing the world lines of the rays constrained to move on circular trajectories about a spinning mass. The effect of the angular momentum of the source is manifested in the fact that inertial observers must be replaced by local non rotating observers. Starting from this an exact formula for circular trajectories is found. Numerical estimates for the Earth environment show that light would be a better probe than actual clocks to evidence the angular momentum influence. The advantages of light in connection with some principle experiments are shortly reviewed.Comment: TCI Latex, 12 pages, 2 figures. To appear in European Journal of Physic

    Detection of the gravitomagnetic clock effect

    Get PDF
    The essence of the gravitomagnetic clock effect is properly defined showing that its origin is in the topology of world lines with closed space projections. It is shown that, in weak field approximation and for a spherically symmetric central body, the loss of synchrony between two clocks counter-rotating along a circular geodesic is proportional to the angular momentum of the source of the gravitational field. Numerical estimates are presented for objects within the solar system. The less unfavorable situation is found around Jupiter.Comment: 14 pages; Latex. To be published on Classical and Quantum Gravit

    On the Possibility of Measuring the Gravitomagnetic Clock Effect in an Earth Space-Based Experiment

    Full text link
    In this paper the effect of the post-Newtonian gravitomagnetic force on the mean longitudes ll of a pair of counter-rotating Earth artificial satellites following almost identical circular equatorial orbits is investigated. The possibility of measuring it is examined. The observable is the difference of the times required to ll in passing from 0 to 2π\pi for both senses of motion. Such gravitomagnetic time shift, which is independent of the orbital parameters of the satellites, amounts to 5×10−7\times 10^{-7} s for Earth; it is cumulative and should be measured after a sufficiently high number of revolutions. The major limiting factors are the unavoidable imperfect cancellation of the Keplerian periods, which yields a constraint of 10−2^{-2} cm in knowing the difference between the semimajor axes aa of the satellites, and the difference II of the inclinations ii of the orbital planes which, for i∼0.01∘i\sim 0.01^\circ, should be less than 0.006∘0.006^\circ. A pair of spacecrafts endowed with a sophisticated intersatellite tracking apparatus and drag-free control down to 10−9^{-9} cm s−2^{-2} Hz−1/2^{-{1/2}} level might allow to meet the stringent requirements posed by such a mission.Comment: LaTex2e, 22 pages, no tables, 1 figure, 38 references. Final version accepted for publication in Classical and Quantum Gravit
    • …
    corecore