9 research outputs found

    КИХ-фильтры с независимым управлением фазочастотной характеристикой

    Get PDF
    Рассматривается структурная реализация цифровых КИХ фильтров методом частотной выборки с возможностью управления фазочастотной характеристикой в реальном времени. Приводятся характеристики элементарных цифровых фильтров, алгоритм сложения их выходных сигналов и способ смещения фазочастотной характеристики.Розглядається проектування та структурна реалізація цифрових КІХ-фільтрів методом частотної вибірки з можливістю управління фазочастотною характеристикою в реальному часі. Наводяться характеристики елементарних цифрових фільтрів, алгоритм складання їх вихідних сигналів і спосіб зміщення фазочастотної характеристики.The structural realization of digital FIR-filters using frequency sampling with real time control of phase-frequency characteristic is considered. The characteristics of elementary digital filters, the algorithm of their output signals summation and the way of phase-frequency characteristic shift are given

    Structure and oligomerization state of the C-terminal region of the Middle East respiratory syndrome coronavirus nucleoprotein

    No full text
    International audienceMiddle East respiratory syndrome coronavirus (MERS-CoV) is a human pathogen responsible for a severe respiratory illness that emerged in 2012. Structural information about the proteins that constitute the viral particle is scarce. In order to contribute to a better understanding of the nucleoprotein (N) in charge of RNA genome encapsidation, the structure of the C-terminal domain of N from MERS-CoV obtained using single-crystal X-ray diffraction is reported here at 1.97 Å resolution. The molecule is present as a dimer in the crystal structure and this oligomerization state is confirmed in solution, as measured by additional methods including small-angle X-ray scattering measurements. Comparisons with the structures of the C-terminal domains of N from other coronaviruses reveals a high degree of structural conservation despite low sequence conservation, and differences in electrostatic potential at the surface of the protein

    Toscana virus nucleoprotein oligomer organization observed in solution.

    No full text
    International audienceToscana virus (TOSV) is an arthropod-borne virus belonging to the Phlebovirus genus within the Bunyaviridae family. As in other bunyaviruses, the genome of TOSV is made up of three RNA segments. They are encapsidated by the nucleoprotein (N), which also plays an essential role in virus replication. To date, crystallographic structures of phlebovirus N have systematically revealed closed-ring organizations which do not fully match the filamentous organization of the ribonucleoprotein (RNP) complex observed by electron microscopy. In order to further bridge the gap between crystallographic data on N and observations of the RNP by electron microscopy, the structural organization of recombinant TOSV N was investigated by an integrative approach combining X-ray diffraction crystallography, transmission electron microscopy, small-angle X-ray scattering, size-exclusion chromatography and multi-angle laser light scattering. It was found that in solution TOSV N forms open oligomers consistent with the encapsidation mechanism of phlebovirus RNA

    Zika Virus Methyltransferase: Structure and Functions for Drug Design Perspectives.

    No full text
    International audienceThe Flavivirus Zika virus (ZIKV) is the causal agent of neurological disorders like microcephaly in newborns or Guillain-Barre syndrome. Its NS5 protein embeds a methyltransferase (MTase) domain involved in the formation of the viral mRNA cap. We investigated the structural and functional properties of the ZIKV MTase. We show that the ZIKV MTase can methylate RNA cap structures at the N-7 position of the cap, and at the 2'-O position on the ribose of the first nucleotide, yielding a cap-1 structure. In addition, the ZIKV MTase methylates the ribose 2'-O position of internal adenosines of RNA substrates. The crystal structure of the ZIKV MTase determined at a 2.01-Å resolution reveals a crystallographic homodimer. One chain is bound to the methyl donor (S-adenosyl-l-methionine [SAM]) and shows a high structural similarity to the dengue virus (DENV) MTase. The second chain lacks SAM and displays conformational changes in the αX α-helix contributing to the SAM and RNA binding. These conformational modifications reveal a possible molecular mechanism of the enzymatic turnover involving a conserved Ser/Arg motif. In the second chain, the SAM binding site accommodates a sulfate close to a glycerol that could serve as a basis for structure-based drug design. In addition, compounds known to inhibit the DENV MTase show similar inhibition potency on the ZIKV MTase. Altogether these results contribute to a better understanding of the ZIKV MTase, a central player in viral replication and host innate immune response, and lay the basis for the development of potential antiviral drugs.IMPORTANCE The Zika virus (ZIKV) is associated with microcephaly in newborns, and other neurological disorders such as Guillain-Barre syndrome. It is urgent to develop antiviral strategies inhibiting the viral replication. The ZIKV NS5 embeds a methyltransferase involved in the viral mRNA capping process, which is essential for viral replication and control of virus detection by innate immune mechanisms. We demonstrate that the ZIKV methyltransferase methylates the mRNA cap and adenosines located in RNA sequences. The structure of ZIKV methyltransferase shows high structural similarities to the dengue virus methyltransferase, but conformational specificities highlight the role of a conserved Ser/Arg motif, which participates in RNA and SAM recognition during the reaction turnover. In addition, the SAM binding site accommodates a sulfate and a glycerol, offering structural information to initiate structure-based drug design. Altogether, these results contribute to a better understanding of the Flavivirus methyltransferases, which are central players in the virus replication
    corecore