8 research outputs found

    A computational model for real-time calculation of electric field due to transcranial magnetic stimulation in clinics

    Get PDF
    The aim of this paper is to propose an approach for an accurate and fast (real-time) computation of the electric field induced inside the whole brain volume during a transcranial magnetic stimulation (TMS) procedure. The numerical solution implements the admittance method for a discretized realistic brain model derived from Magnetic Resonance Imaging (MRI). Results are in a good agreement with those obtained using commercial codes and require much less computational time. An integration of the developed codewith neuronavigation toolswill permit real-time evaluation of the stimulated brain regions during the TMSdelivery, thus improving the efficacy of clinical applications

    Tropospheric and stratospheric smoke over Europe as observed within EARLINET/ACTRIS in summer 2017

    Get PDF
    For several weeks in summer 2017, strong smoke layers were observed over Europe at numerous EARLINET stations. EARLINET is the European research lidar network and part of ACTRIS and comprises more than 30 ground-based lidars. The smoke layers were observed in the troposphere as well as in the stratosphere up to 25 km from Northern Scandinavia over whole western and central Europe to the Mediterranean regions. Backward trajectory analysis among other tools revealed that these smoke layers originated from strong wild fires in western Canada in combination with pyrocumulus convection. An extraordinary fire event in the mid of August caused intense smoke layers that were observed across Europe for several weeks starting on 18 August 2017. Maximum aerosol optical depths up to 1.0 at 532 nm were observed at Leipzig, Germany, on 22 August 2017 during the peak of this event. The stratospheric smoke layers reached extinction coefficient values of more than 600 Mm−1 at 532 nm, a factor of 10 higher than observed for volcanic ash after the Pinatubo eruption in the 1990s. First analyses of the intensive optical properties revealed low particle depolarization values at 532 nm for the tropospheric smoke (spherical particles) and rather high values (up to 20%) in the stratosphere. However, a strong wavelength dependence of the depolarization ratio was measured for the stratospheric smoke. This indicates irregularly shaped stratospheric smoke particles in the size range of the accumulation mode. This unique depolarization feature makes it possible to distinguish clearly smoke aerosol from cirrus clouds or other aerosol types by polarization lidar measurements. Particle extinction-to-backscatter ratios were rather low in the order of 40 to 50 sr at 355 nm, while values between 70-90 sr were measured at higher wavelengths. In the western and central Mediterranean, stratospheric smoke layers were most prominent in the end of August at heights between 16 and 20 km. In contrast, stratospheric smoke started to occur in the eastern Mediterranean (Cyprus and Israel) in the beginning of September between 18 and 23 km. Stratospheric smoke was still visible in the beginning of October at certain locations (e.g. Evora, Portugal), while tropospheric smoke was mainly observed until the end of August within Europe. An overview of the smoke layers measured at several EARLINET sites will be given. The temporal development of these layers as well as their geometrical and optical properties will be presented

    Sea-Ice Cloud Screening for Copernicus Sentinel-3 Sea and Land Surface Temperature Radiometer (SLSTR)

    No full text
    Bayesian approach to classify SLSTR pixels over polar regions in clear ocean, clouds and sea-ice is presented. The approach is based on Look-Up-Tables estimating the probability distribution function (PDF) for a pixel, given a set of measured values for selected variables. PDF’s have been generated by analysing archived MODIS AQUA and TERRA products. MODIS data have been selected because of the long available time series, the quality of cloud mask products and possibility to simulate the SLSTR observation including the dual view capability. A first set of candidate input variables in the PDF’s, defined based on review relevant literature, has been optimized both in terms of classification skills and computational efficiency. Different combinations of variables have been considered together with ancillary data SST and observation geometry to get the final set of variables to be used for classification. The optimization process based on: visual analysis, quantitative comparison against SAR ice concentration products is presented. The method has been applied to SLTR L1 data showing improvement respect to the current operational method of cloud classification. In addition, classification of pixels covered by sea ices is provided which consequently improves the SST final product

    Mid-latitude cirrus investigations at high-resolution through ground-based lidar measurements

    No full text
    Although cirrus vertical distributions determine their local cooling or warming effects, one of the main missing information in Global Climate Models (GCMs) is the characterization of their vertical location and stratification. Lidar technique, in contrast, can detect cirrus with high spatial and temporal resolution, providing accurate information on their vertical distribution. In this work, the recent and on going studies about the the characterization of mid-latitude cirrus through lidar systems located at the Observatory of Haute Provence (OHP, 43.9 ° N, 5.7 ° E) in France and at Rome Tor Vergata (RTV, 41.8 ° N, 12.6 ° E) in Italy are presented. Cirrus have been firstly studied in terms of quasi-stationary periods regarding statistical variability. A clustering approach has been then adopted to derive cirrus classification (and climatology) over the period 1996-2007 for OHP lidar measurements and over 2007-2010 for RTV dataset. Three independent cirrus classes have been identified: I thin middle tropospheric cirrus, II thick upper tropospheric cirrus, III thin tropopause cirrus. The temporal variability of the optical properties of these classes has been then analyzed at lidar raw temporal sampling (180 sec). While advection dominates, at the first order, variability on timescale of minutes can be related to space fluctuations of cloud properties on typical scale of few kilometers. Lognormal distributions of the optical depth have been used to model variability of the cirrus optical depth as observed by lidars. Finally, the implementation of the OHP lidar system in terms of two analogic channels that collect the Rayleigh-Mie orthogonal and parallel component signals through an high-resolution acquisition chain (vertical and temporal sampling of 37.5 m and 1 sec, respectively) has been employed to investigate the high frequency cirrus variability in a recent campaign held at the OHP. The preliminary results of this campaign are also showe

    Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms – Part 2: Ozone DIAL uncertainty budget

    Get PDF
    International audienceA standardized approach for the definition, propagation and reporting of uncertainty in the ozone differential absorption lidar data products contributing to the Network for the Detection for Atmospheric Composition Change (NDACC) database is proposed. One essential aspect of the proposed approach is the propagation in parallel of all independent uncertainty components through the data processing chain before they are combined together to form the ozone combined standard uncertainty. The independent uncertainty components contributing to the overall budget include random noise associated with signal detection, uncertainty due to saturation correction, background noise extraction, the absorption cross-sections of ozone, NO2, SO2, and O2, the molecular extinction cross-sections, and the number densities of the air, NO2, and SO2. The expression of the individual uncertainty components and their step-by-step propagation through the ozone DIAL processing chain are thoroughly estimated. All sources of uncertainty except detection noise imply correlated terms in the vertical dimension, which requires knowledge of the covariance matrix when the lidar signal is vertically filtered. In addition, the covariance terms must be taken into account if the same detection hardware is shared by the lidar receiver channels at the absorbed and non-absorbed wavelengths. The ozone uncertainty budget is presented as much as possible in generic form (i.e., as a function of instrument performance and wavelength) so that all NDACC ozone DIAL investigators across the network can estimate, for their own instrument and in a straightforward manner, the expected impact of each reviewed uncertainty component. In addition, two actual examples of full uncertainty budget are provided, using measurements from the tropospheric ozone DIAL located at the JPL-Table Mountain Facility, California, and measurements from the JPL stratospheric ozone DIAL located at Mauna Loa Observatory, Hawaii

    Unruptured Aneurysms Italian Study (UAIS) background and method

    No full text
    Treatment of unruptured cerebral aneurysms still represents an unsettled question in neurosurgical and neuroradiological communities. Although nowadays the indication for treatment have become relatively clear, indeed uncertainity remains for what concerns the proper treatment modality (surgical or endovascular) in terms of both the risk and the mid and long-term efficacy of the two procedures. The "Unruptured Aneurysms Italian Study" is a cooperative prospective study which aims to delineate the "State of the Art" in a nation based population. It has been designed: 1) to depict the nationwide modality of treatment of Unruptured Aneurysms, 2) to assess in the most objective way the overall treatment-related mortality and morbidity as well as the surgical and endovascular risk in the respective patient populations (it is not a surgical versus endovascular study) and 3) to asses the efficacy of the different procedures in the mid and long term periods. The study started on June 2003 and to June 2006, 637 patients have been enrolled. The study will end when the 1000th patient is enrolled
    corecore