292 research outputs found

    Structure formation in the presence of dark energy perturbations

    Full text link
    We study non-linear structure formation in the presence of dark energy. The influence of dark energy on the growth of large-scale cosmological structures is exerted both through its background effect on the expansion rate, and through its perturbations as well. In order to compute the rate of formation of massive objects we employ the Spherical Collapse formalism, which we generalize to include fluids with pressure. We show that the resulting non-linear evolution equations are identical to the ones obtained in the Pseudo-Newtonian approach to cosmological perturbations, in the regime where an equation of state serves to describe both the background pressure relative to density, and the pressure perturbations relative to the density perturbations as well. We then consider a wide range of constant and time-dependent equations of state (including phantom models) parametrized in a standard way, and study their impact on the non-linear growth of structure. The main effect is the formation of dark energy structure associated with the dark matter halo: non-phantom equations of state induce the formation of a dark energy halo, damping the growth of structures; phantom models, on the other hand, generate dark energy voids, enhancing structure growth. Finally, we employ the Press-Schechter formalism to compute how dark energy affects the number of massive objects as a function of redshift.Comment: 21 pages, 8 figures. Matches published version, with caption of Fig. 6 correcte

    Super Storm Desmond: a process-based assessment

    Get PDF
    “Super” Storm Desmond broke meteorological and hydrological records during a record warm year in the British-Irish Isles (BI). The severity of the storm may be a harbinger of expected changes to regional hydroclimate as global temperatures continue to rise. Here, we adopt a process-based approach to investigate the potency of Desmond, and explore the extent to which climate change may have been a contributory factor. Through an Eulerian assessment of water vapour flux we determine that Desmond was accompanied by an Atmospheric River (AR) of severity unprecedented since at least 1979, on account of both high atmospheric humidity and high wind speeds. Lagrangian air-parcel tracking and moisture attribution techniques show that long-term warming of North Atlantic sea surface temperatures (SSTs) has significantly increased the chance of such high humidity in ARs in the vicinity of the BI. We conclude that, given exactly the same dynamical conditions associated with Desmond, the likelihood of such an intense AR has already increased by 25% due to long-term climate change. However, our analysis represents a first-order assessment, and further research is needed into the controls influencing AR dynamics

    A healthy start : promoting mental health and well-being in the early primary school years

    Get PDF
    This study was in part funded by the University of Malta.Mental health problems in children represent a significant international health concern, with up to one in five children using mental health services during the course of any given year. Identifying the processes of what prevents social, emotional and behaviour difficulties (SEBD) and promotes healthy development from an early age can make a significant contribution to the promotion of positive mental health in children. This article describes a longitudinal study which sought to identify the risk and promotive factors as young children move from the early to junior years in primary school. Multilevel analysis was used to identify the individual, classroom, school, home and community factors that predict change in SEBD and in prosocial behaviour in the early school years. It also calculated the cumulative effect of the various risk and promotive factors on the pupils’ well-being and mental health. The article presents the windows of vulnerability and opportunity for young children’s healthy development, proposing a trajectory for healthy development in early and middle childhood.peer-reviewe

    Deep strong light-matter coupling in plasmonic nanoparticle crystals

    Get PDF
    In the regime of deep strong light–matter coupling, the coupling strength exceeds the transition energies of the material, fundamentally changing its properties; for example, the ground state of the system contains virtual photons and the internal electromagnetic field gets redistributed by photon self-interaction. So far, no electronic excitation of a material has shown such strong coupling to free-space photons. Here we show that three-dimensional crystals of plasmonic nanoparticles can realize deep strong coupling under ambient conditions, if the particles are ten times larger than the interparticle gaps. The experimental Rabi frequencies (1.9 to 3.3 electronvolts) of face-centred cubic crystals of gold nanoparticles with diameters between 25 and 60 nanometres exceed their plasmon energy by up to 180 per cent. We show that the continuum of photons and plasmons hybridizes into polaritons that violate the rotating-wave approximation. The coupling leads to a breakdown of the Purcell effect—the increase of radiative damping through light–matter coupling—and increases the radiative polariton lifetime. The results indicate that metallic and semiconducting nanoparticles can be used as building blocks for an entire class of materials with extreme light–matter interaction, which will find application in nonlinear optics, the search for cooperative effects and ground states, polariton chemistry and quantum technology

    Novel hybrid organic/inorganic 2D quasiperiodic PC: from diffraction pattern to vertical light extraction

    Get PDF
    Recently, important efforts have been dedicated to the realization of a fascinating class of new photonic materials or metamaterials, known as photonic quasicrystals (PQCs), in which the lack of the translational symmetry is compensated by rotational symmetries not achievable by the conventional periodic crystals. As ever, more advanced functionality is demanded and one strategy is the introduction of non-linear and/or active functionality in photonic materials. In this view, core/shell nanorods (NRs) are a promising active material for light-emitting applications. In this article a two-dimensional (2D) hybrid a 2D octagonal PQC which consists of air rods in an organic/inorganic nanocomposite is proposed and experimentally demonstrated. The nanocomposite was prepared by incorporating CdSe/CdS core/shell NRs into a polymer matrix. The PQC was realized by electron beam lithography (EBL) technique. Scanning electron microscopy, far field diffraction and spectra measurements are used to characterize the experimental structure. The vertical extraction of the light, by the coupling of the modes guided by the PQC slab to the free radiation via Bragg scattering, consists of a narrow red emissions band at 690 nm with a full width at half-maximum (FWHM) of 21.5 nm. The original characteristics of hybrid materials based on polymers and colloidal NRs, able to combine the unique optical properties of the inorganic moiety with the processability of the host matrix, are extremely appealing in view of their technological impact on the development of new high performing optical devices such as organic light-emitting diodes, ultra-low threshold lasers, and non-linear devices
    corecore