4,095 research outputs found

    High energy constraints on Lorentz symmetry violations

    Get PDF
    Lorentz violation at high energies might lead to non linear dispersion relations for the fundamental particles. We analyze observational constraints on these without assuming any a priori equality between the coefficients determining the amount of Lorentz violation for different particle species. We focus on constraints from three high energy processes involving photons and electrons: photon decay, photo-production of electron-positron pairs, and vacuum Cerenkov radiation. We find that cubic momentum terms in the dispersion relations are strongly constrained.Comment: 7 pages, 1 figure, Talk presented at CPT01; the Second Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, 15-18 Aug. 2001. Minor numerical error corrected, gamma-decay constraint update

    Einstein Gravity as an emergent phenomenon?

    Get PDF
    In this essay we marshal evidence suggesting that Einstein gravity may be an emergent phenomenon, one that is not ``fundamental'' but rather is an almost automatic low-energy long-distance consequence of a wide class of theories. Specifically, the emergence of a curved spacetime ``effective Lorentzian geometry'' is a common generic result of linearizing a classical scalar field theory around some non-trivial background. This explains why so many different ``analog models'' of general relativity have recently been developed based on condensed matter physics; there is something more fundamental going on. Upon quantizing the linearized fluctuations around this background geometry, the one-loop effective action is guaranteed to contain a term proportional to the Einstein--Hilbert action of general relativity, suggesting that while classical physics is responsible for generating an ``effective geometry'', quantum physics can be argued to induce an ``effective dynamics''. This physical picture suggests that Einstein gravity is an emergent low-energy long-distance phenomenon that is insensitive to the details of the high-energy short-distance physics.Comment: 8 pages, Essay awarded an honorable mention in the year 2001 Gravity Research Foundation essay competitio

    Particle creation by moving spherical shell in the dynamical Casimir effect

    Get PDF
    The creation of massless scalar particles from the quantum vacuum by spherical shell with time varying radius is studied. In the general case of motion the equations are derived for the instantaneous basis expansion coefficients. The examples are considered when the mean number of particles can be explicitly evaluated in the adiabatic approximation.Comment: 9 pages, LaTeX, no figures, typos corrected, discussion added. Journal-ref adde

    Sonoluminescence as a QED vacuum effect: Probing Schwinger's proposal

    Full text link
    Several years ago Schwinger proposed a physical mechanism for sonoluminescence in terms of photon production due to changes in the properties of the quantum-electrodynamic (QED) vacuum arising from a collapsing dielectric bubble. This mechanism can be re-phrased in terms of the Casimir effect and has recently been the subject of considerable controversy. The present paper probes Schwinger's suggestion in detail: Using the sudden approximation we calculate Bogolubov coefficients relating the QED vacuum in the presence of the expanded bubble to that in the presence of the collapsed bubble. In this way we derive an estimate for the spectrum and total energy emitted. We verify that in the sudden approximation there is an efficient production of photons, and further that the main contribution to this dynamic Casimir effect comes from a volume term, as per Schwinger's original calculation. However, we also demonstrate that the timescales required to implement Schwinger's original suggestion are not physically relevant to sonoluminescence. Although Schwinger was correct in his assertion that changes in the zero-point energy lead to photon production, nevertheless his original model is not appropriate for sonoluminescence. In other works (see quant-ph/9805023, quant-ph/9904013, quant-ph/9904018, quant-ph/9905034) we have developed a variant of Schwinger's model that is compatible with the physically required timescales.Comment: 18 pages, ReV_TeX 3.2, 9 figures. Major revisions: This document is now limited to providing a probe of Schwinger's original suggestion for sonoluminescence. For details on our own variant of Schwinger's ideas see quant-ph/9805023, quant-ph/9904013, quant-ph/9904018, quant-ph/990503

    March Philadephia Patriots

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-ps/2724/thumbnail.jp

    Black hole entropy as T-duality invariant

    Get PDF
    We study the Euler numbers and the entropies of the non-extremal intersecting D-branes in ten-dimensions. We use the surface gravity to constrain the compactification radii. We correctly obtain the integer valued Euler numbers for these radii. Moreover, the entropies are found to be invariant under the T-duality transformation. In the extremal limit, we obtain the finite entropies only for two intersecting D-branes. We observe that these entropies are proportional to the product of the charges of each D-brane. We further study the entropies of the boosted metrics. We find that their entropies can be interpreted in term of the microscopic states of D-branes.Comment: 15 pages, Revte

    Irreducible modules over finite simple Lie conformal superalgebras of type K

    Get PDF
    We construct all finite irreducible modules over Lie conformal superalgebras of type KComment: Accepted for publication in J. Math. Phys

    Reply to "Can gravitational dynamics be obtained by diffeomorphism invariance of action?"

    Get PDF
    In a previous work we showed that, in a suitable setting, one can use diffeomorphism invariance in order to derive gravitational field equations from boundary terms of the gravitational action. Standing by our results we reply here to a recent comment questioning their validity.Comment: Accepted for publication in PR

    Cosmography beyond standard candles and rulers

    Full text link
    We perform a cosmographic analysis using several cosmological observables such as the luminosity distance moduli, the volume distance, the angular diameter distance and the Hubble parameter. These quantities are determined using different data sets: Supernovae type Ia and Gamma Ray Bursts, the Baryonic Acoustic Oscillations, the cosmic microwave background power spectrum and the Hubble parameter as measured from surveys of galaxies. This data set allows to put constraints on the cosmographic expansion with unprecedented precision. We also present forecasts for the coefficients of the kinematic expansion using future but realistic data sets: constraints on the coefficients of the expansions are likely to improve by a factor ten with the upcoming large scale structure probes. Finally, we derive the set of the cosmographic parameters for several cosmological models (including Λ\LambdaCDM) and compare them with our best fit set. While distance measurements are unable to discriminate among these models, we show that the inclusion of the Hubble data set leads to strong constraints on the lowest order coefficients and in particular it is incompatible with Λ\LambdaCDM at 3-σ\sigma confidence level. We discuss the reliability of this determination and suggest further observations which might be of crucial importance for the viability of cosmographic tests in the next future.Comment: 15 pages, 2 figures, 2 tables, Accepted for publication in PR
    • 

    corecore