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I. INTRODUCTION

Lie conformal superalgebras encode the singular part of the operator product expansion of
chiral fields in two-dimensional quantum field theory.6

A complete classification of �linear� finite simple Lie conformal superalgebras was obtained in
Ref. 5. The list consists of current Lie conformal superalgebras Cur g, where g is a simple
finite-dimensional Lie superalgebra, four series of “Virasoro-like” Lie conformal superalgebras

Wn�n�0�, Sn,b, and S̃n�n�2,b�C�, Kn�n�0,n�4�, K4�, and the exceptional Lie conformal su-
peralgebra CK6.

All finite irreducible representations of the simple conformal superalgebras Cur g, K0=Vir,
and K1 were constructed in Ref. 2, and those of S2,0, W1=K2, K3, and K4 in Ref. 3. More recently,
the problem has been solved for all Lie conformal superalgebras from the three series Wn, Sn,b, and

S̃n.1

The construction in all cases relies on the observation that the representation theory of a Lie
conformal superalgebra R is controlled by the representation theory of the associated �extended�
annihilation algebra g= �Lie R�+,2 thereby reducing the problem to the construction of continuous
irreducible modules with discrete topology over the linearly compact superalgebra g.

The construction of the latter modules consists of two parts. First one constructs a collection
of continuous g-modules Ind�F�, associated with all finite-dimensional irreducible g0-modules F,
where g0 is a certain subalgebra of g �=gl�1 �n� or sl�1 �n� for the W and S series, and =cson for the
Kn series�.

The irreducible g-modules Ind�F� are called nondegenerate, and the second part of the prob-
lem consists of two parts: �A� classify the g0-modules F, for which the g-modules Ind�F� are
nondegenerate, and �B� construct explicitly the irreducible quotients of Ind�F�, called degenerate
g-modules, for reducible Ind�F�.

Both problems have been solved for types W and S in Ref. 1, and it turned out, remarkably,
that all degenerate modules occur as cokernels of the super-de Rham complex, or their duals.

In the present paper, we solve the problem for the Lie conformal superalgebras Kn with n
�4 �recall that for 0�n�4 the problem has been solved in Refs. 2 and 3, though in Ref. 3 the
construction for n=3 and 4 is not very explicit�. First, we construct the g-modules Ind�F� �Theo-
rem 4.1�. Second, we find all F, for which Ind�F� is reducible and, furthermore, find all singular
vectors �Theorem 5.1�. Finally, in Sec. VI we construct a contact complex, which is a certain
reduction of the de Rham complex, and show �using Theorem 5.1� that the cokernels in the contact
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complex and their duals produce all degenerate g-modules �Corollary 6.6�. As a result, we obtain
an explicit construction of all finite irreducible Kn-modules for n�4 �Theorem 7.1�.

We should mention that the construction of our �super� contact complex mimics the beautiful
Rumin’s construction10 for ordinary �nonsuper� contact manifolds.

The remaining cases, namely, the representation theory of K4� �the derived algebra of K4� and
of the exceptional Lie conformal superalgebra CK6, and the explicit construction of degenerate
modules for K3, will be worked out in a subsequent publication.

II. FORMAL DISTRIBUTIONS, LIE CONFORMAL SUPERALGEBRAS, AND THEIR
MODULES

In this section, we introduce the basic definitions and notations in order to have a self-
contained work �see Refs. 6, 4, 1, and 3�. Let g be a Lie superalgebra. A g-valued formal
distribution in one indeterminate z is a formal power series

a�z� = �
n�Z

anz−n−1, an � g .

The vector superspace of all formal distributions, g��z ,z−1��, has a natural structure of a
C��z�-module. We define

Resz a�z� = a0.

Let a�z� and b�z� be two g-valued formal distributions. They are called local if

�z − w�N�a�z�,b�w�� = 0 for N � 0.

Let g be a Lie superalgebra, a family F of g-valued formal distributions is called a local
family if all pairs of formal distributions from F are local. Then, the pair �g ,F� is called a formal
distribution Lie superalgebra if F is a local family of g-valued formal distributions and g is
spanned by the coefficients of all formal distributions in F. We define the formal �-function by

��z − w� = z−1 �
n�Z

�w

z
�n

.

Then it is easy to show �Ref. 6, Corollary 2.2� that two local formal distributions are local if and
only if the bracket can be represented as a finite sum of the form

�a�z�,b�w�� = �
j

�a�z��j�b�w���w
j ��z − w�/j!,

where �a�z��j�b�w��=Resz�z−w� j�a�z� ,b�w��. This is called the operator product expansion. Then
we obtain a family of operations �n�, n�Z+, on the space of formal distributions. By taking the
generating series of these operations, we define the �-bracket as

�a�b� = �
n�Z+

�n

n!
�a�n�b� .

The properties of the �-bracket motivate the following definition.
Definition 2.1: A Lie conformal superalgebra R is a left Z /2Z-graded C���-module endowed

with a C-linear map R � R→C��� � R, a � b�a�b, called the �-bracket, and satisfying the fol-
lowing axioms �a ,b ,c�R�:

Conformal sesquilinearity ��a�b� = − ��a�b�, �a��b� = �� + ���a�b� ,

Skew symmetry �a�b� = − �− 1�p�a�p�b��b−�−�a� ,
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Jacobi identity �a��b�c�� = ��a�b��+�c� + �− 1�p�a�p�b��b��a�c�� .

Here and further, p�a��Z /2Z is the parity of a.
A Lie conformal superalgebra is called finite if it has finite rank as a C���-module. The notions

of homomorphism, ideal, and subalgebras of a Lie conformal superalgebra are defined in the usual
way. A Lie conformal superalgebra R is simple if �R�R��0 and contains no ideals except for zero
and itself.

Definition 2.2: A module M over a Lie conformal superalgebra R is a Z /2Z-graded
C���-module endowed with a C-linear map R � M→C��� � M, a � v�a�v, satisfying the follow-
ing axioms �a ,b�R�, v�M;

�M1�� ��a��
Mv = ��M,a�

M�v = − �a�
Mv ,

�M2�� �a�
M,b�

M�v = �a�b��+�
M v .

An R-module M is called finite if it is finitely generated over C���. An R-module M is called
irreducible if it contains no nontrivial submodule, where the notion of submodule is the usual one.

Given a formal distribution Lie superalgebra �g ,F� denoted by F̄ the minimal subspace of
g��z ,z−1�� which contains F and is closed under all jth products and invariant under �z. Due to

Dong’s lemma,6 we know that F̄ is a local family as well. Then Conf�g ,F�ª F̄ is the Lie
conformal superalgebra associated with the formal distribution Lie superalgebra �g ,F�.

In order to give the �more or less� reverse functorial construction, we need the following: let

R̃=R�t , t−1� with �̃=�+�t and define the bracket,6

�atn,btm� = �
j�Z+

�m

j
��ajb�tm+n−j . �2.1�

Observe that �̃R̃ is an ideal of R̃ with respect to this bracket. Now, consider Alg R= R̃ / �̃R̃ with this
bracket and let

R = 	�
n�Z

�atn�z−n−1 = a��t − z�/a � R
 .

Then �Alg R ,R� is a formal distribution Lie superalgebra. Note that Alg is a functor from the
category of Lie conformal superalgebras to the category of formal distribution Lie superalgebras.
On has6

Conf�Alg R� = R, Alg�Conf�g,F�� = �Alg F̄,F̄� .

Note also that �Alg R ,R� is the maximal formal distribution superalgebra associated with the
conformal superalgebra R in the sense that all formal distribution Lie superalgebras �g ,F� with
Conf�g ,F�=R are quotients of �Alg R ,R� by irregular ideals �that is, an ideal I in g with no
nonzero b�z��R such that bn� I�. Such formal distribution Lie superalgebras are called equiva-
lent.

We thus have an equivalence of categories of Lie conformal superalgebras and equivalence
classes of formal distribution Lie superalgebras. So the study of formal distribution Lie superal-
gebras reduces to the study of Lie conformal superalgebras.

An important tool for the study of Lie conformal superalgebras and their modules is the
�extended� annihilation superalgebra. The annihilation superalgebra of a Lie conformal superal-
gebra R is the subalgebra A�R� �also denoted by Alg R+� of the Lie superalgebra Alg R spanned by
all elements atn, where a�R, n�Z+. It is clear from �2.1� that this is a subalgebra, which is
invariant with respect to the derivation �=−�t of Alg R. The extended annihilation superalgebra is
defined as
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A�R�e = �Alg R�+
ª C� › �Alg R�+.

Introducing the generating series

a� = �
j�Z+

� j

j!
�atj�, a � R , �2.2�

we obtain from �2.1�,

�a�,b�� = �a�b��+�, ��a�� = ��a�� = − �a�. �2.3�

Formula �2.3� implies the following important proposition relating modules over a Lie con-
formal superalgebra R to certain modules over the corresponding extended annihilation superal-
gebra �Alg R�+.

Proposition 2.3: (Reference 2) A module over a Lie conformal superalgebra R is the same as
a module over the Lie superalgebra �Alg R�+ satisfying the property

a�m � C��� � M for any a � R, m � M . �2.4�

�One just views the action of the generating series a� of �AlgR�+ as the �-action of a�R�
The problem of classifying modules over a Lie conformal superalgebra R is thus reduced to

the problem of classifying a class of modules over the Lie superalgebra �AlgR�+.
Let g be a Lie superalgebra satisfying the following three conditions �cf. Ref. 3, p. 911�:
�L1� g is Z-graded of finite depth d�N, i.e., g= � j�−dg j and �gi ,g j��gi+j.
�L2� There exists a semisimple element z�g0 such that its centralizer in g is contained in g0.
�L3� There exists an element ��g−d such that �� ,gi�=gi−d, for i�0.
Some examples of Lie superalgebras satisfying �L1�–�L3� are provided by annihilation supe-

ralgebras of Lie conformal superalgebras.
If g is the annihilation superalgebra of a Lie conformal superalgebra, then the modules V over

g that correspond to finite modules over the corresponding Lie conformal superalgebra satisfy the
following conditions:

�1� For all v�V, there exists an integer j0�−d such that g jv=0, for all j� j0.
�2� V is finitely generated over C���.

Motivated by this, the g-modules satisfying these two properties are called finite conformal
modules.

We have a triangular decomposition

g = g�0 � g0 � g�0 with g�0 = � j�0g j, g�0 = � j�0g j . �2.5�

Let g�0= � j�0g j. Given a g�0-module F, we may consider the associated induced g-module

Ind�F� = Indg�0
g F = U�g��U�g�0�F ,

called the generalized Verma module associated with F. We shall identify Ind�F� with U�g�0�
� F via the PBW theorem.

Let V be a g-module. The elements of the subspace

Sing�V� ª �v � V�g�0v = 0�

are called singular vectors. For us the most important case is when V=Ind�F�. The g�0-module F
is canonically a g�0-submodule of Ind�F�, and Sing�F� is a subspace of Sing�Ind�F��, called the
subspace of trivial singular vectors. Observe that Ind�F�=F � F+, where F+=U+�g�0� � F and
U+�g�0� is the augmentation ideal of the algebra U�g�0�. Then nonzero elements of the space

Sing+�Ind�F�� ª Sing�Ind�F�� � F+
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are called nontrivial singular vectors. The following key result will be used in the rest of the paper
�see Refs. 9, 7, and 3�.

Theorem 2.4: Let g be a Lie superalgebra that satisfies (L1)–(L3).

(a) If F is an irreducible finite-dimensional g�0-module, then the subalgebra g�0 acts trivially
on F and Ind�F� has a unique maximal submodule.

(b) Denote by Ir�F� the quotient by the unique maximal submodule of Ind�F�. Then the map
F� Ir�F� defines a bijective correspondence between irreducible finite-dimensional
g0-modules and irreducible finite conformal g-modules.

(c) A g-module Ind�F� is irreducible if and only if the g0-module F is irreducible and Ind�F� has
no nontrivial singular vectors.

In Sec. II we will describe the Lie conformal superalgebra Kn and its annihilation superalgebra
K�1,n�+. In the remaining sections we shall study the induced K�1,n�+-modules and its singular
vectors in order to apply Theorem 2.4 to get the classification of irreducible finite modules over
the Lie conformal algebra Kn.

III. LIE CONFORMAL ALGEBRA Kn AND ANNIHILATION LIE ALGEBRA K„1,n…+

Let 	�n� be the Grassmann superalgebra in the n odd indeterminates 
1 ,
2 , . . . ,
n. Let t be an
even indeterminate, 	�1,n�=C�t , t−1� � 	�n�, and consider the superalgebra of derivations of the
superalgebra 	�1,n�,

W�1,n� = 	a�t + �
i=1

n

ai�i�a,ai � 	�1,n�
 , �3.1�

where �i=� /�
i and �t=� /�t. The contact superalgebra K�1,n� is the subalgebra of W�1,n� defined
by

K�1,n� ª �D � W�1,n��D� = fD� for some fD � 	�1,n�� , �3.2�

where �=dt−�i=1
n 
id
i is the standard contact form, and the action of D on � is the usual action

of vector fields on differential forms.
The space 	�1,n� can be identified with the Lie superalgebra K�1,n� via the map

f � 2f�t + �− 1�p�f��
i=1

n

�
i�t f + �i f��
i�t + �i� ,

the corresponding Lie bracket for elements f ,g�	�1,n� being

�f ,g� = �2f − �
i=1

n


i�i f���tg� − ��t f��2g − �
i=1

n


i�ig� + �− 1�p�f��
i=1

n

��i f���ig� .

The Lie superalgebra K�1,n� is a formal distribution Lie superalgebra with the following
family of mutually local formal distributions

a�z� = �
j�Z

�atj�z−j−1 for a = 
i1
¯ 
ir

� 	�n� .

The associated Lie conformal superalgebra Kn is identified with

Kn = C��� � 	�n� , �3.3�

the �-bracket for f =
i1
¯
ir

,g=
 j1
¯
 js

being as follows:5
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�f�g� = ��r − 2���fg� + �− 1�r�
i=1

n

��i f���ig�� + ��r + s − 4�fg . �3.4�

The Lie conformal superalgebra Kn has rank 2n over C���. It is simple for n�0,n�4, and the
derived algebra K4� is simple and has codimension 1 in K4.

The annihilation superalgebra is

A�Kn� = K�1,n�+ = 	�1,n�+ ª C�t� � 	�n� , �3.5�

and the extended annihilation superalgebra is

A�Kn�e = K�1,n�+ = C� › K�1,n�+,

where � acts on it as −ad�t. Note that A�Kn�e is isomorphic to the direct sum of A�Kn� and the
trivial one-dimensional Lie algebra C��+ 1

2
�.

The Lie superalgebra K�1,n� is Z-graded by putting

deg�tm
i1
¯ 
ik

� = 2m + k − 2,

and it induces a gradation on K�1,n�+ making it a Z-graded Lie superalgebra of depth 2:
K�1,n�+= � j�−2�K�1,n�+� j. It is easy to check that K�1,n�+ satisfies conditions �L1�–�L3�.

Observe that K�1,n�+ is the subalgebra of

W�1,n�+ = 	a�t + �
i=1

n

ai�i�a,ai � 	�1,n�+
 , �3.6�

defined by �cf. �3.2��

K�1,n�+ ª �D � W�1,n�+�D� = fD� for some fD � 	�1,n�+� . �3.7�

IV. INDUCED MODULES

Using Theorem 2.4, the classification of finite irreducible Kn-modules can be reduced to the
study of induced modules for K�1,n�+. Observe that

�K�1,n�+�−2 = �1�� ,

�K�1,n�+�−1 = �
i:1 � i � n�� ,

�K�1,n�+�0 = �t� � �
i
 j:1 � i � j � n�� . �4.1�

We shall use the following notation for the basis elements of �K�1,n�+�0:

E00 = t, Fij = − 
i
 j . �4.2�

Observe that �K�1,n�+�0�CE00 � so�n��cso�n�. Take

� ª − 1
21 �4.3�

as the element that satisfies �L3� in Sec. II.
For the rest of this work, g will be K�1,n�+. Let F be a finite-dimensional irreducible

g0-module, which we extend to a g�0-module by letting g j with j�0 acting trivially. Then we
shall identify, as above
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Ind�F� � 	�1,n� � F � C��� � 	�n� � F �4.4�

as C-vector spaces. In order to describe the action of g in Ind�F�, we introduce the following
notation:


I ª 
i1
¯ 
ik

if I = �i1, . . . ,ik� ,

�L
I ª �l1
¯ �ls


I if L = �l1, . . . ,ls� ,

� f
I ª �L
I if f = 
L,

�f � ª k if f = 
i1
¯ 
ik

. �4.5�

In the following theorem, we describe the g-action on Ind�F� using the �-action notation in
�2.2�, i.e.,

f��g � v� = �
j�0

� j

j!
�tj f� · �g � v�

for f ,g�	�n� and v�F.
Theorem 4.1: For any monomials f ,g�	�n� and v�F, where F is a g0-module, we have the

following formula for the �-action of g=K�1,n�+ on Ind�F�:

f��g � v� = �− 1�p�f���f � − 2���� fg� � v + �
i=1

n

���if�
�
ig� � v + �− 1�p�f��

r�s

���r�sf�g � Frsv

+ ���− 1�p�f��� fg� � E00v + �− 1�p�f�+p�g��
i=1

n

�� f��ig��
i � v + �
i�j

���if�
�� jg� � Fijv�

+ �2�− 1�p�f��
i�j

� f��i� jg� � Fijv .

The proof of this theorem will be done through several lemmas. Since this is quite technical,
we have moved the proof into Appendix A.

In the last part of this section we shall prove an easier formula for the �-action in the induced
module. This is done by taking the Hodge dual of the basis �cf. Ref. 3, p. 922 and observe the

difference�. More precisely, for a monomial 
I�	�n�, we let 
̄I be its Hodge dual, i.e., the unique

monomial in 	�n� such that 
̄I
I=
1¯
n.
Lemma 4.2: For any monomial elements f =
I ,g=
L, we have

�ig = ḡ
i = �− 1��ḡ�
iḡ ,

� f�g� = �− 1���f ���f �−1�/2�+�f ��ḡ�f ḡ ,


ig = − �− 1��ḡ��iḡ ,

g
i = − �− 1�n�iḡ .

Proof: The proof is left to the reader. �

The following theorem translates Theorem 4.1 in terms of the Hodge dual basis.
Theorem 4.3: Let F be a g0=cso�n�-module. Then the �-action of K�1,n�+ in Ind�F�=C���

� 	�n� � F, given by Theorem 4.1, is equivalent to the following one:
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f��g � v� = �− 1���f ���f �+1�/2�+�f ��g� � 	��f � − 2���fg� � v − �− 1�p�f��
i=1

n

��i f���ig� � v − �
r�s

��r�sf�g

� Frsv + �� fg � E00v − �− 1�p�f��
i=1

n

�i�f
ig� � v + �− 1�p�f��
i�j

��i f�
 jg � Fijv�
− �2�

i�j

f
i
 jg � Fijv
 .

Proof: By simple computations, using Lemma 4.2, it is easy to obtain the �-action in the
Hodge dual basis. That is, let T be the vector space automorphism of Ind�F� given by T�g � v�
= ḡ � v, then the theorem gives the formula for the composition T � �f� · � �T−1. For example, in
order to “dualize” the second term in the �-action in Theorem 4.1, we write ���if�


ig in terms of f
and ḡ as follows:

���if�

ig = �− 1����f �−1���f �−2�/2�+��f �−1��
ig���i f�
ig = �− 1����f �−1���f �−2�/2�+��f �−1���ḡ�−1�+1+�ḡ���i f���iḡ�

= �− 1���f ���f �+1�/2�+�f ��ḡ�+1+�f ���i f���iḡ� ,

obtaining the second summand in the formula, given by the theorem. By similar computations, the
proof follows. �

V. SINGULAR VECTORS

By Theorem 2.4, the classification of irreducible finite modules over the Lie conformal supe-
ralgebra Kn reduces to the study of singular vectors in the induced modules Ind�F�, where F is an
irreducible finite-dimensional cso�n�-module. This section will be devoted to the classification of
singular vectors.

When we discuss the highest weight of vectors and singular vectors, we always mean with
respect to the upper Borel subalgebra in K�1,n�+ generated by �K�1,n�+��0 and the elements of the
Borel subalgebra of so�n� in �K�1,n�+�0. More precisely, recall �4.2�, where we defined Fij =
−
i
 j � �K�1,n�+�0�CE00 � so�n�. Observe that Fij corresponds to Eij −Eji�so�n�, where Eij are
the elements of the standard basis of matrices. Consider the following �standard� notation �cf. Ref.
8, p. 83�.

Case g=so�2m+1,C�: Here we take

Hj = iF2j−1,2j, 1 � j � m , �5.1�

a basis of a Cartan subalgebra h. Let  j �h* be given by  j�Hk�=� jk. Let

� = � � i �  j�i � j� � � � k�

be the set of roots. The root space decomposition is

g = h � �
���

g� with g� = CE�

where for 1� l� j�m and 1�k�m,

El−j
= F2l−1,2j−1 + F2l,2j + i�F2l−1,2j − F2l,2j−1� ,

El+j
= F2l−1,2j−1 − F2l,2j − i�F2l−1,2j + F2l,2j−1� ,

E−�l−j�
= F2l−1,2j−1 + F2l,2j − i�F2l−1,2j − F2l,2j−1� ,
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E−�l+j�
= F2l−1,2j−1 − F2l,2j + i�F2l−1,2j + F2l,2j−1� ,

E�k
= F2k−1,2m+1 � iF2k,2m+1. �5.2�

Let �= �1−2 , . . . ,m−1−m ,m� and �+= �i� j � i� j�� �k� be the simple and positive
roots, respectively. Consider

�lj ª F2l−1,2j−1 − iF2l,2j−1 = 1
2 �El−j

+ El+j
� ,

�lj ª F2l,2j + iF2l−1,2j = 1
2 �El−j

− El+j
�

�k ª Ek
. �5.3�

Then,

Bso�2m+1� = ��lj,�lj,�k�1 � i � j � m,1 � k � m�� . �5.4�

Case g=so�2m ,C�: Here we take

Hj = iF2j−1,2j, 1 � j � m ,

a basis of a Cartan subalgebra h, as with so�2m+1�. In this case,

� = � � i �  j�i � j�

is the set of roots. Let �= �1−2 , . . . ,m−1−m ,m−1+m� and �+= �i� j � i� j� be the simple
and positive roots, respectively. Then,

Bso�2m� = ��lj,�lj�1 � i � j � m�� . �5.5�

In order to write explicitly weights for vectors in K�1,n�+-modules, we will consider the basis
for the Cartan subalgebra h in �K�1,n�+�0�CE00 � so�n�, introduce above,

E00;H1, . . . ,Hm, m = �n/2� ,

and we shall write the weight of an eigenvector for the Cartan subalgebra h as an m+1-tuple for
the corresponding eigenvalues of this basis,

� = ��0;�1, . . . ,�m� . �5.6�

Observe that a vector m� in the K�1,n�+-module Ind�F� is a singular highest weight vector if
and only if the following conditions are satisfied:

�S1� �d2 /d�2��f�m� �=0 for all f �	�n�,
�S2� ��d /d���f�m� ���=0=0 for all f =
I with �I��1,
�S3� ��f�m� ���=0=0 for all f =
I with �I��3 or f �Bso�n�.
In order to classify the finite irreducible Kn-modules we should solve the equations �S1�–�S3�

to obtain the singular vectors. The next theorem is the main result of this section and gives us the
complete classification of singular vectors:

Theorem 5.1: Let F be an irreducible finite-dimensional cso�n�-module with highest weight
�.

If n�4, then m� � Ind�F� is a nontrivial singular highest weight vector if and only if m� is one
of the following vectors (in the Hodge dual basis):

�a� m� = �
�2�c − i
�1�c� � v�, where v� is a highest weight vector of the cso�n�-module F and �

= �−k ;k ,0 , . . . ,0�, with k�Z�0,
�b�
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m� = �
l=1

m

��
�2l�c + i
�2l − 1�c� � wl + �
�2l�c − i
�2l − 1�c� � w̄l� − �n,oddi
�2m + 1�c � wm+1,

where w1=v� is a highest weight vector of the cso�n�-module F with the highest weight

� = �n + k − 2;k,0, . . . ,0� for k � Z�0,

and all wl , w̄l are nonzero and uniquely determined by v�.

If n=3, then m� � Ind�F� is a nontrivial singular highest weight vector if and only if m� is one of the
following vectors:

�a� m� = �
�2�c − i
�1�c� � v�, where v� is a highest weight vector of the cso�3�-module V and �

= �−k ;k�, with k� 1
2Z�0,

�b� m� = �
�2�c + i
�1�c� � v�+ �
�2�c − i
�1�c� � w1− i
�3�c � w2, where v� is a highest weight vector of
the cso�3�-module F with highest weight

� = �k + 1;k� for k � 1
2Z�0 and k � 1

2 ,

and all wl ,w2 are nonzero and uniquely determined by v�.
�c� m� =��
* � v��+ i
�1 , 2�c � v�−2
�2 , 3�c � F2,3v�+2
�1 , 3�c � F1,3v�, where v� is a highest weight

vector of the cso�3�-module F with the highest weight �= � 3
2 ; 1

2
�.

The proof of this theorem will be done through several lemmas. Since this is quite technical,
we have moved the proof into Appendix B.

Remark 5.2:

�a� The explicit expression of all nonzero vectors wl, w̄l in terms of v� that appear in the second
family of singular vectors for all n�3 are written in �B68�–�B72�.

�b� If n=4, the first family of singular vectors m� = �
�2�c − i
�1�c� � v�, where v� is a highest
weight vector of the cso�4�-module F and �= �−k ;k ,0�, with k�Z�0, corresponds to the
family of singular vectors b2 in Proposition 7.2, part �i�, in Ref. 3. Finally, the second family
of singular vectors in Theorem 5.1, part �b�, correspond to the family of singular vectors b5
in Proposition 7.2, part �ii�, in Ref. 3.

�c� If n=3, the singular vectors in cases �a�, �b�, and �c� described in the previous theorem,
correspond to the vectors a2, a4 and a6 in Proposition 5.1 in Ref. 3, respectively. Observe
that the families �a� and �b� described for n�4 correspond to the families �a� and �b� for
n=3, but in the latter case, the parameter k is one-half a positive integer. Observe that the
missing case �k+1;k� with k= 1

2 in the family �b� is completed by case �c�.

VI. MODULES OF DIFFERENTIAL FORMS, THE CONTACT COMPLEX, AND
IRREDUCIBLE INDUCED K„1,n…+-MODULES

Let us recall some standard notation from Ref. 1. In order to define the differential forms one
considers an odd variable dt and even variables d
1 , . . . ,d
n and defines the differential forms to
be the �super� commutative algebra freely generated by these variables over 	�1,n�+=C�t�
� 	�n�, or

�+ = �n,+ ª 	�1,n�+�d
1, . . . ,d
n� � 	�dt� .

Generally speaking, �+ is just a polynomial �super� algebra over the variables

t,
1, . . . ,
n,dt,d
1, . . . ,d
n,

where the parity is

p�t� = 0, p�
i� = 1, p�dt� = 1, p�d
i� = 0.
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These are called (polynomial) differential forms, and we define the Laurent differential forms to be
the same algebra over 	�1,n�=C�t , t−1� � 	�n�,

� = �n = ��1,n� ª 	�1,n��d
1, . . . ,d
n� � 	�dt� .

We would like to consider a fixed complementary subspace �− to �+ in � chosen as follows:

�− = �n,− ª t−1C�t−1� � 	�n� � C�d
1, . . . ,d
n� � 	�dt� .

For the differential forms, we need the usual differential degree that measure only the involve-
ment of the differential variables dt ,d
1 , . . . ,d
n, that is,

deg t = 0, deg 
i = 0, deg dt = 1, deg d
i = 1,

which give the standard Z-gradation both of � and ��. As usual, we denote by �k, ��
k the

corresponding graded components, and if we need to take care of the dependence on n, they will
be denoted by �n

k and �n,�
k , respectively.

We denote by �c
k the subspace of differential forms with constant coefficients in �k.

The operator d is defined on � as usual, as an odd derivation, such that d�t�=dt ,d�
i�
=d
i ,d�dt�=d�d
i�=0. Observe that d maps both �+ and �− into themselves and that d2=0.

As usual, we extend the natural action of W�1,n�+ on 	�1,n� to the whole � by imposing the
property that D �super� commutes with d. It is clear that �+ and all the subspaces �k are
W�1,n�+-invariant. Hence, �+

k and �k are W�1,n�+-modules, which are called the natural repre-
sentations of W�1,n�+ in differential forms.

We define the action of W�1,n�+ on �− via the isomorphism of �− with the factor of � by �+.
Practically, this means that in order to compute D�f�, where f ��−, we apply D to f and “disre-
gard terms with non-negative powers of t.”

The operator d restricted to ��
k defines an odd morphism between the corresponding repre-

sentations. Clearly, the image and the kernel of such a morphism are submodules in ��
k . The

second statement of the following result is Proposition 4.1, part �3�, in Ref. 1. Now, we complete
the proof of this result.

Proposition 6.1:

(a) The maps d :�+
l →�+

l+1 are morphisms of W�1,n�+-modules. The kernel of one of them is
equal to the image of the next one and it is a nontrivial proper submodule in �+

l .
(b) The dual maps d# : ��+

l+1�#→ ��+
l �# are morphisms of W�1,n�+-modules. The kernel of one of

them is equal to the image of the next one and it is a nontrivial proper submodule in ��+
l �#.

Proof:

�a� Consider the homotopy operator K :�n,+→�n,+ given by

K�d
n�� = 
n�, K��� = 0 if � does not involve d
n.

Let  :�n,+→�n,+ be defined by

�d
n�� = �
n�� = 0, ��� = � if � does not involve both d
n and 
n.

One can check that Kd+dK=Id−. By standard argument, using this homotopy operator,
the proof follows.

�b� Considering the dual maps K : ��n,+�#→ ��n,+�# and  : ��n,+�#→ ��n,+�#, we obtain K#d#

+d#K#=Id−#.

Therefore, if �� ��n,+�# is a closed form, we get �=d#�K#��+#���, and #��� is also a
closed form. Observe that �#�����=������=0 if � involve d
n or 
n. Hence, #� is essentially an
element in ��n−1,+�#, namely, it is equal to an element in ��n−1,+�# trivially extended in �’s that
involve d
n or 
n. It follows by induction on n that
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� = d#�1 + �0 �6.1�

for some �0 ,�1� ��n,+�# and �0 is a closed form that is a trivial extension of an element �̃0

� ��0,+�#. However, �0,+=C�t� � ∧ �dt�= �p�t�+q�t�dt � p ,q�C�t�� and �̃0� ��0,+�# is closed if and
only if �̃0�q�t�dt�=0 for all q�C�t�. In general, it is easy to see that �� ��0,+�# is exact if and
only if � is closed �i.e., ��q�t�dt�=0� and ��1�=0. Therefore, using �6.1�, we have �=d#�
+�0�1�1*, where 1*�c1�=c and zero everywhere else. Since 1*� ��n,+

0 �#, we get the exactness of
the sequence

¯ ——→
d#

��n,+
2 �# ——→

d#

��n,+
1 �# ——→

d#

��n,+
0 �#.

�

Recall that K�1,n�+ is a subalgebra of W�1,n�+, defined by �3.7�. Hence, �+ and �+
k are

K�1,n�+-modules as well.
Observe that the differential of the standard contact form �=dt−�i=1

n 
id
i is d�=
−�i=1

n �d
i�2, and following Rumin’s construction in Ref. 10, consider for k�2,

Ik = d� ∧ �k−2 + � ∧ �k−1 � �k, �6.2�

I+
k = d� ∧ �+

k−2 + � ∧ �+
k−1 � �+

k , �6.3�

and I1=�∧�0, I+
1 =�∧�+

0, I0=0= I+
0. It is clear that d�Ik�� Ik+1 and d�I+

k�� I+
k+1, and using �3.7� it

is easy to prove that Ik and I+
k are K�1,n�+-submodules of �k and �+

k , respectively. Therefore, we
have the following contact complex of K�1,n�+-modules �we also denote by d the induced maps in
the quotients�:

0 → C→
d

�+
0→

d

�+
1/I+

1→
d

�+
2/I+

2→
d

¯ . �6.4�

Let C�d
i�l��+
l be the subspace of homogeneous polynomials in d
1 , . . . ,d
n of degree l.

Using that the action of cso�n�=CE00 � so�n�= �K�1,n�+�0 in �+
l is given by

E00 � 2t�t + �
i=1

n


i�i, Fij � 
i� j − 
 j�i, �6.5�

it follows that C�d
i�l is a cso�n�-invariant subspace. Now, consider �l=��C�d
i�l�, where � :�+
l

→�+
l / I+

l , and take �l= ��l�#. Here and further, we denote by # the restricted dual, that is, the sum
of the dual of all the graded components of the initial module, as in Ref. 1, Sec. B1. Then, we have

Proposition 6.2:

(1) The cso�n�-module �l , l�0, is irreducible with highest weight �−l ; l ,0 , . . . ,0�.
(2) The K�1,n�+-module ��+

l / I+
l �# , l�0, contains �l and this inclusion induces the isomorphism

��+
l /I+

l �# = Ind��l� .

(3) The dual maps d# : ��+
l+1 / I+

l+1�#→ ��+
l / I+

l �# are morphisms of K�1,n�+-modules. The kernel of
one of them is equal to the image of the next one and it is a nontrivial proper submodule in
��+

l / I+
l �#.

Proof:

�1� Consider �l=��Sl�d
i��, where � :�+
l →�+

l / I+
l . Observe that

�l � C�d
1, . . . ,d
n�l/C�d
1, . . . ,d
n�l−2�� �d
i�2� ,

and it is well known that �l are irreducible lowest weight cso�n�-modules with lowest
weight vector �d
1+ id
2�l whose weight is �l ;−l ,0 , . . . ,0�, �see Ref. 8�. Therefore, �l
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= ��l�# are irreducible highest weight cso�n�-modules with the highest weight
�−l ; l ,0 , . . . ,0�.

�2� By the definition of the restricted dual, it is the sum of the dual of all the graded components
of the initial module. In our case, �l is the component of minimal degree in �+

l / I+
l , so �l

becomes the component of maximal degree in ��+
l / I+

l �#. This implies that g�0 acts trivially
on �l, so the morphism Ind �l→ ��+

l / I+
l �# is defined. Clearly, �+

l / I+
l is isomorphic to

�l
� C�t,
1, . . . ,
n� ,

so it is a cofree module. Then the module ��+
l / I+

l �# is a free C��0 ,�1 , . . . ,�n�-module and the
morphism

Ind��l� → ��+
l /I+

l �#

is therefore an isomorphism.
�3� The first part of this statement follows immediately from the fact that d commutes with the

action of vector fields. It remains to prove that the kernel of one of them is equal to the image
of the next one.

First, we shall prove the exactness of the sequence �6.4� except for level 1, where we have
ker d=Im d+Ctdt. Let ���+

k such that d�� I+
k+1. Then d�=�∧�+d�∧�, with ���+

k and �
��+

k−1. Observe that d��−�∧��=�∧ ��−d��; hence, by replacing � by another representative,
we may assume that �=0. Since 0=d2�=d��∧��=d�∧�−�∧d�, then d�∧d�=d�∧ ��∧��
= �sgn��∧d�∧�= �sgn��∧�∧d�=0. Therefore, d��Ker�d�∧ · �=0. However, the differential
complex ��+

• ,d� is exact by Proposition 6.1, part �a�, proving the exactness of �6.4�. By standard
arguments, it is easy to see the exactness of the dual, finishing the proof. �

Corollary 6.3: The following K�1,n�+-modules are isomorphic

�+
k /I+

k = �Ind��k��*.

Let us now study the K�1,n�+-modules �−
k . Recall that we identified �via isomorphism� �−

k

with �k /�+
k . Let �̃ :�k→�k /�+

k =�−
k . Observe that I−

k = �̃�Ik� is a K�1,n�+-submodule of �−
k , and

d�I−
k�� I−

k+1. Let


* = 
1 ¯ 
n and �−
k = t−1
*�c

k � �−
k .

Proposition 6.4: For g=K�1,n�+, we have the following.

(1) The cso�n�-module �−
k is an irreducible submodule of �−

k with the highest weight

�n + k − 2;k,0, . . . ,0� for k � 0,

and g�0 acts trivially on �−
k .

(2) There is a g-module isomorphism �−
k / I−

k =Ind��−
k�.

(3) The differential d gives us g-module morphisms on �−
k / I−

k , and the kernel and image of d are
g-submodules in �−

k / I−
k .

(4) The kernel of d and image of d in �−
k / I−

k for k�2 coincide, in �−
1 / I−

1, we have Ker d

=C�t−1dt�¯ +Im d, and in �−
0, we have Ker d=0.

Proof:

�1� First, a simple computation shows that g�0 maps �−
k to zero. Also, as a g0-module, �−

k is
isomorphic to the space of harmonic polinomials in d
1 , . . . ,d
n of degree k multiplied by the
one-dimensional module t−1
*�. This permits us to see that its highest weight vectors are

t−1
*� for k = 0,
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t−1
*�d
1 − id
2�k� for k � 1.

The values of the highest weights are easy to compute using �6.5�.
�2� It is straightforward to see that �−

0 is a free rank 1 C��0 ,�1 , . . . ,�n�-module. Now, the action
of �0 ,�1 , . . . ,�n on �−

k / I−
k is coefficientwise; hence, the fact that �−

k / I−
k is a free

C��0 ,�1 , . . . ,�n�-module follows. This gives us the isomorphism �−
k / I−

k =Ind��−
k�.

�3� It follows immediately from the fact that d commutes with the action of vector fields.
�4� Let ���−

k be such that d�� I−
k+1. Then, d�=�∧�+d�∧�, with ���−

k and ���−
k−1.

Observe that d��−�∧��=�∧ ��−d��; hence, by replacing � by another representative, we
may assume that �=0. Since 0=d2�=d��∧��=d�∧�−�∧d�, then d�∧d�=d�∧ ��∧��
=�∧�∧d�=0. Therefore, d��Ker�d�∧ · �=0. However, the differential complex ��−

• ,d� is
exact except for k=1 �see Proposition 4.3 in Ref. 1�, proving the statement. �

In the last part of this section, we classify the irreducible induced K�1,n�+-modules. Let g

=K�1,n�+. Now, we have the following.
Theorem 6.5: Let F� be an irreducible g0-module with the highest weight �.
If n�4, then the g-module Ind�F�� is an irreducible (finite conformal) module except for the

following cases:

(a) �= �−l ; l ,0 , . . . ,0� , l�0, Ind�F��= ��+
l / I+

l �#, and d#��+
l+1 / I+

l+1�# is the only nontrivial proper
submodule.

(b) �= �n+k−2;k ,0 , . . . ,0� ,k�1, and Ind�F��=�−
k / I−

k . For k�2 the image d�−
k−1 / I−

k−1 is the
only nontrivial proper submodule. For k=1, both Im�d� and Ker�d� are proper submodules,
and Ker�d� is a maximal submodule.

Proof: We know from Theorem 2.4 that in order for the g-module Ind�F� to be reducible it has
to have nontrivial singular vectors and the possible highest weights of F in this situation are listed
in Theorem 5.1 above.

The fact that the induced modules are actually reducible in those cases is known because we
have got nice realizations for these induced modules in Propositions 6.2 and 6.4 together with
morphisms defined by d ,d#, so kernels and images of these morphisms become submodules.

The subtle thing is to prove that a submodule is really a maximal one. We notice that in each
case the factor is isomorphic to a submodule in another induced module so it is enough to show
that the submodule is irreducible. This can be proven as follows; a submodule in the induced
module is irreducible if it is generated by any highest singular vector that it contains. We see from
our list of nontrivial singular vectors that there is at most one such vector for each case and the
images and kernels in question are exactly generated by those vectors, hence they are irreduc-
ible. �

Corollary 6.6: The theorem gives us a description of finite conformal irreducible
K�1,n�+-modules for n�4. Such a module is either Ind�F� for an irreducible finite-dimensional
g0-module F, where the highest weight of F does not belong to the types listed in (a) and (b) of the
theorem, or the factor of an induced module from (a) and (b) by its submodule Ker�d�.

VII. FINITE IRREDUCIBLE Kn MODULES

In the first part of this section, we follow Sec. E in Ref. 1. In order to give an explicit
construction and classification of all finite irreducible Kn-modules, we need the following defini-
tions. Recall that W�1,n� acts by derivations on the algebra of differential forms �=��1,n�, and
note that this is a conformal module by taking the family of formal distributions

E = ���z − t�� and ��z − t��dt�� � ��n�� .

Translating this and all other attributes of differential forms, like de Rham differential, etc., into
the conformal algebra language, we have the following definitions.
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Recall that given an algebra A, the associated current formal distribution algebra is A�t , t−1�
with the local family F= �a�z�=�n�Z�atn�z−n−1=a��z− t��a�A. The associated conformal algebra is
Cur A=C��� � A with multiplication defined by a�b=ab for a ,b�A and extended using sesqui-
linearity. This is called the current conformal algebra, �see Ref. 6 for details�.

The conformal algebra of differential forms �n is the current algebra over the commutative
associative superalgebra ��n�+��n�dt with the obvious multiplication and parity, subject to the
relation �dt�2=0

�n = Cur���n� + ��n�dt� = C��� � ���n� + ��n�dt� .

The de Rham differential d̃ of �n �we use the tilde in order to distinguish it from the de Rham
differential d on ��n�� is a derivation of the conformal algebra �n such that

d̃��1 + �2dt� = d�1 + d�2dt − �− 1�p��1����1dt� . �7.1�

Here and further, �i���n�.
The standard Z+-gradation ��n�= � j�Z+

��n� j of the superalgebra of differential forms by their
degree induces a Z+-gradation

�n = � j�Z+
�n

j , where �n
j = C��� � ���n� j + ��n� j−1dt� ,

so that d̃ :�n
j →�n

j+1.

Let �=dt−�i=1
n 
id
i��n

1. Observe that d̃�=−�i=1
n �d
i�2. Now, we define, for j�2,

In
j = C��� � �� ∧ ��n� j−1 + d� ∧ ��n� j−2dt� � �n

j ,

In
1 = C��� � �� ∧ ��n�0�, I0 = 0. �7.2�

It is clear that d̃�In
j �� In

j+1, and it is easy to prove that In
j are Kn-submodules of �n

j . Therefore, we

get a Rumin conformal complex ��n
j / In

j , d̃�, where we also denote by d̃ the differential in the
quotient.

Let V be a finite-dimensional irreducible cso�n�-module, using the results of Sec. II and
recalling that the annihilation algebra of Kn is K�1,n�+, we have that the K�1,n�+-modules Ind�V�
studied in Sec. VI are Kn-modules with the �-action given by Theorem 4.3. We denote by Tens�V�
the corresponding Kn-module.

Since the extended annihilation algebra K�1,n�+ is a direct sum of K�1,n�+ and a one-
dimensional Lie algebra Ca, any irreducible K�1,n�+-module is obtained from a K�1,n�+-module
M by extending to K�1,n�+, letting a�−�, where ��C. Translating into the conformal language
�see Proposition 2.3�, we see that all Kn-modules are obtained from conformal K�1,n�+-modules
by taking for the action of � the action of −�t+�I ,��C. We denote by Tens� V and �k,� ,��C,
the Kn-modules obtained from Tens V and �k by replacing � by �+� in the corresponding actions.

As in Ref. 1, we see that Theorem 6.5 and Corollary 6.6, along with Sec. II and Proposition
2.3, together with Propositions 2.6, 2.8, and 2.9 in Ref. 1, give us a complete description of finite
irreducible Kn-modules, namely, we obtain the following theorem.

Theorem 7.1: The following is a complete list of nontrivial finite irreducible Kn-modules �n
�4,��C�:

�1� Tens� V, where V is a finite-dimensional irreducible cso�n�-module with the highest weight
different from �−k ;k ,0 , . . . ,0� and �n+k−2;k ,0 , . . . ,0� for k=1,2 , . . .,

�2� ��n
k / In

k�
�
* /Ker d̃* ,k=1,2 , . . ., and the same modules with reversed parity, and

�3� Kn-modules dual to �2�, with k�1.

Remark 7.2:
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�a� Using Proposition 6.4, we have that the kernel of d̃ and the image of d̃ coincide in �n
k / In

k for

k�2. Now, since �n
k+2 / In

k+2 is a free C���-module of finite rank and ��n
k+1 / In

k+1� / Im d̃

= ��n
k+1 / In

k+1� /Ker d̃� Im d̃��n
k+2 / In

k+2, we obtain that ��n
k+1 / In

k+1� / Im d̃ is a finitely gener-
ated free C���-module. Therefore, we can apply Proposition 2.6 in Ref. 1, and we have that

��n
k+1/In

k+1�*/Ker d̃* � ���n
k/In

k�/Ker d̃�* �7.3�

for k�1.
�b� Since for a free finite rank module M over a Lie conformal superalgebra we have M**

=M, using �7.3�, the Kn-modules in case �3� of Theorem 7.1 are isomorphic to

��n
k / In

k�� /Ker d̃, k=1,2 , . . ..
�c� Let V be a finite-dimensional �one dimesional, in fact� irreducible cso�n�-module with the

highest weight �0;0,…,0�. Observe that the module Tens V has a maximal submodule of
codimension 1 over C. Hence, the irreducible quotient is the one-dimensional �over C� trivial
Kn -module. Therefore, we excluded the case k=0 in Theorem 7.1, case �2�.

�d� Let V be a finite-dimensional irreducible cso�n�-module with the highest weight �n
−2;0 ,0 , . . . ,0�. Observe that in case �3� in Theorem 7.1, we excluded k=1 because in this
case the dual corresponds to the module Tens� V, which is isomorphic to �0,� and it is an
irreducible tensor module; therefore, this module is included in case �1� of Theorem 7.1.

�e� The case K2�W1 was studied in full detail at the end of Sec. V in Ref. 1.
�f� The remaining cases K3, K4�, and CK6 will be worked out in a subsequent publication.

APPENDIX A: PROOF OF THEOREM 4.1

This appendix is devoted to the proof of Theorem 4.1, and it will be done through several
lemmas.

Given I� �1, . . . ,n�, we shall use the following notation:

i = i
I
ª #�j � I:j � i� .

It is easy to see the following useful formulas:

�I
I = �− 1��I���I�−1�/2, �A1�

�I�
J
K� = �− 1��I��J�
J�I�
K� if J � I = � , �A2�

�I−�i�
I = �− 1�i+�I���I�−1�/2
i. �A3�

Without loss of generality, we shall assume all over the proofs that

f = 
I, g = 
J
K with J � I = � and K � I .

Lemma A.1: For any m�3, f , g�	�n�, we have tmf · �g � v�=0.
Proof: Using that

�tm
I,
r� = 	− mtm−1
I
r if r � I

�− 1�Itm�r
I if r � I ,

 �A4�

it is easy to see that
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tmf · �g � v� = tm
I · �
J
K � v� = �
i=0

m

�
S�J,�S�=i

�sgn�i,S
m!

�m − i�!
��S
J��tm−i
I
S�
K � v

= �
i=0

m

�
S�J,�S�=i

�
L�K

�sgn�i,S,L
m!

�m − i�!
��S
J���L
K��tm−i�L�
I
S�� � v �A5�

for certain signs �sgn�i,S, �sgn�i,S,L that are not needed explicitly yet. Now, observe that for �S�= i
and L�K� I, we have

deg�tm−i�L�
I
S�� = 2�m − i� + �I� + �S� − �L� − 2 = 2m − i + �I� − �L� − 2 � m − 2.

Hence, using �A5� and m�3 we prove the lemma. �

From Lemma A.1, the �-action has degree at most 2 in �. Now, we study the �0-term.
Lemma A.2:


I · �
J
K � v� = �
L�K

�− 1��I���J�+�K��+��L���L�−1�/2�−�L���K�−�L��
J��L
K���L
I� � v . �A6�

Proof: Using �A4�, it is clear that


I · �
J
K � v� = �− 1��I��J�
J�
I��
K� � v .

Hence, we may suppose that J=� and we shall apply induction on �K�. If �K�=0, the statement is
obvious. Now, consider 
 j
K, with j�ki for any ki�K. Observe that


I · �
 j
K � v� = �− 1��I�
 j
I
K � v + �− 1��I��� j
I�
K � v

= �
L�K

�− 1��I�+�I��K�+��L���L�−1�/2�−�L���K�−�L��
 j��L
K���L
I� � v

+ �
L�K

�− 1��I�+��I�−1��K�+��L���L�−1�/2�−�L���K�−�L����L
K���L� j
I� � v . �A7�

Now, using that

�L�
 j
K� = �− 1��L�
 j��L
K� if j � L ,

� j�L�
 j
K� = �− 1��L���L
K� if j � L ,

�L� j
I = �− 1��L�� j�L
I,

Eq. �A7� becomes


I · �
 j
K � v� = �
L�K

�− 1��I���K�+1�+��L���L�−1�/2�−�L���K�−�L��+�L���L�
 j
K����L
I� � v

+ �
L��j��K��j�

�− 1��I�+��I�−1��K�+��L���L�−1�/2�−�L���K�−�L��+�L�+�L��� j�L��
 j
K��� j�L
I� � v

= �
L�K��j�

�− 1��I���K�+1�+��L���L�−1�/2�−�L���K�+1−�L����L��
 j
K���L
I� � v ,

finishing the proof. �

The following lemma provides the �0-term in the �-action formula of Theorem 4.1.
Lemma A.3: For any monomial elements f =
I, g=
L with I��, we have

f · �g � v� = �− 1�p�f���f � − 2���� fg� � v + �
i=1

n

���if�
�
ig� � v + �− 1�p�f��

i�j

���i�j f�
g � Fijv .
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Proof: Consider as before f =
I, g=
J
K with J� I=� and K� I. Recall formula �A6�,


I · �
J
K � v� = �
L�K

�− 1��I���J�+�K��+��L���L�−1�/2�−�L���K�−�L��
J��L
K���L
I� � v .

Since �L
I�g�0 if �I−L��2, it is enough to consider the summands that appear in the cases �I
−L�=0,1 ,2.

Case �I−L�=0: This summand appears if and only if K= I, and it corresponds to the single
possible choice of L=K. Using �A1�, we get

�K,I�− 1��I��J�+�I�2+�I���I�−1�/2
J1 � v , �A8�

and using �A2� together with 1=−2�, it can be rewritten as

− 2��− 1�p�f�� f�g� � v , �A9�

obtaining part of the first term of the statement of this lemma. Observe that the term � f�g� is
nonzero if and only if K= I; therefore, the expression �A9� also contains the �K,I in �A8�. This kind
of analysis will be repeatedly used.

Case �I−L�=1: This case is clearly divided in two subcases:

�1a� K= I and L= I− �i� moving i� I, or
�1b� K= I− �k�, and L takes the single value K.

Let us compute each subcase separately.
Subcase (1a): Recalling �A6� and using �A2�, the summands in this subcase become

terms�1a� = �K,I�
i�I

�− 1��I��J�+�I�2+���I�−1���I�−2�/2�−��I�−1�
J��I−�i�
I���I−�i�
I� � v = − �K,I�
i�I

�

− 1��I��J�+��I�−1���I�−2�/2
J
i
i � v .

Now, observe that 0�
i
i � v� Ind�V�. Moreover, using that 
i
i+
i
i= �
i ,
i�=−1�g−2, we ob-
tain

terms�1a� = − �K,I�− 1��I��J�+��I�−1���I�−2�/2�I��
J � v .

On the other hand, as in �A9�, if K= I, we have

� f�g� = �− 1��I��J�+�I���I�−1�/2
J, �A10�

obtaining

terms�1a� = �− 1�p�f��f ���� fg� � v ,

getting the other part of the first term in the statement of this lemma.
Subcase (1b): Recalling �A6� and using �A1� and �A2�,

terms�1b� = �K,I−�k��− 1��I��J�+�I���I�−1�+��I�−1���I�−2�/2
J��I−�k�
I−�k����I−�k�
I� = �K,I−�k�

��− 1��I��J�+k+�I���I�−1�/2
J
k.

On the other hand, observe that ���j f�
�
 jg��0 if and only if j�K�J, j� I and I

− �j�� �j��K�J, i.e., K= I− �j�. Hence, if K= I− �k�, then
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�
j=1

n

���j f�
�
 jg� = ���kf��
kg� = �− 1�k

I
�I−�k��
k
J
I−�k�� = �− 1�k

I+��J�+1���I�−1�+��I�−1���I�−2�/2
k
J = �

− 1�k
I+�J��I�+��I���I�−1��/2
J
k,

obtaining terms�1b� and the second term of the statement of this lemma.
Case �I−L�=2: It remains to see that this case produce the last term in the statement of this

lemma. In order to prove it, observe that this case must be divided in the following subcases,
depending on the relation between f and g, more precisely, depending on the relation between K
and I, namely,

�2a� K= I, hence L= I− �i , j� moving i� j, i, j� I, or
�2b� K= I− �r�, hence L= I− �r ,s� moving s� I with s�r, or
�2c� K= I− �r ,s� with r�s, hence L takes the single value K.

Now, we must show that for each choice of K as in cases �2a�–�2c� the resulting sum over the
corresponding subsets L’s is always equal to

�− 1�p�f��
i�j

���i�j f�
g � Fijv .

Using �A6�, it is clear that

terms�2a� = �
i�j;i,j�I

�− 1��I��J�+�I�+���I�−2���I�−3�/2�−��I�−2�2
J
i
 j�
i
 j� � v

= − �
i�j;i,j�I

�− 1��I��J�+��I���I�+1�/2�+1
J
i
 j � Fijv .

On the other hand,

�
i�j

���i�j
I�
�
J
I� � Fijv = �

i�j;i,j�I

�− 1�i+j�I−�i,j��
J
I� � Fijv = �
i�j;i,j�I

�− 1�i+j+��I�−2��J�
J�I−�i,j��
I�

� Fijv = �
i�j;i,j�I

�− 1��I��J�+�I���I�−1�/2
J
i
 j � Fijv ,

where in the last equality we are using the following formula that can be easily verified for i
� j,

�I−�i,j��
I� = 	�− 1�i+j+�I���I�−1�/2
i
 j if i � j

�− 1�i+j+�I���I�−1�/2
 j
i if i � j .

 �A11�

Therefore, taking care of the sign of the last term in the statement, we proved that it corresponds
to terms�2a�.

In order to study case �2b�, suppose that K= I− �r�. Then, using �A6�,

terms�2b� = �
s�I,s�r

�− 1��I��J�+�I���I�−1�+���I�−2���I�−3�/2�−��I�−2�
J��I−�r,s�
I−�r����I−�r,s�
I� � v

= �
s�I,s�r

�− 1��I��J�+��I�−1���I�−2�/2
J��I−�r,s�
I−�r����I−�r,s�
I� � v .

Using �A11�, it becomes
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terms�2b� = − �
s�I,s�r

�− 1��I��J�+���I�−1���I�−2�/2�+r+s+�I���I�−1�/2
J��I−�r,s�
I−�r�� � Fsrv

− �
s�I,r�s

�− 1��I��J�+���I�−1���I�−2�/2�+r+s+�I���I�−1�/2
J��I−�r,s�
I−�r�� � Frsv

= − �
s�I,s�r

�− 1��I��J�+r+s+�I�+1
J��I−�r,s�
I−�r�� � Fsrv

− �
s�I,r�s

�− 1��I��J�+r+s+�I�+1
J��I−�r,s�
I−�r�� � Frsv . �A12�

On the other hand, if K= I− �r�, we have

�
i�j

���i�j f�
g � Fijv = �

i�j;i,j�I

�− 1�i+j�I−�i,j��
J
I−�r�� � Fijv = �
s�r;s�I

�− 1�r+s+�I��J�
J��I−�r,s�
I−�r��

� Fsrv + �
r�s;s�I

�− 1�r+s+�I��J�
J��I−�r,s�
I−�r�� � Frsv .

Therefore, comparing the last equation with �A12� and taking care of the sign in the last term of
the statement, we prove that terms�2b� correspond to it for K= I− �r�.

Finally, suppose that K= I− �r ,s� with r�s, then �2c� or, more precisely, the sum in �A6� over
those L with �I−L�=2 becomes

terms�2c� = �− 1��I��J�+�I���I�−2�+��I�−2���I�−3�/2
J��I−�r,s�
I−�r,s����I−�r,s�
I� � v

= − �− 1��I��J�+�I�+���I�−2���I�−3�/2�+r+s+�I���I�−1�/2
J��I−�r,s�
I−�r,s�� � Fijv

= − �− 1��I��J�+�I�+1+r+s
J��I−�r,s�
I−�r,s�� � Fijv . �A13�

On the other hand, if K= I− �r ,s� with r�s, we have

�
i�j

���i�j f�
g � Fijv = �

i�j;i,j�I

�− 1�i+j�I−�i,j��
J
I−�r,s�� � Fijv = �− 1�r+s+�I��J�
J��I−�r,s�
I−�r,s�� � Frsv .

Therefore, comparing the last equation with �A13� and taking care of the sign in the last term of
the statement, we prove that case �2c� corresponds to it for K= I− �r ,s�, finishing the proof. �

The following lemma gives us the �1-coefficient of the �-action.
Lemma A.4: For any monomial elements f =
I, g=
L with I��, we have

tf · �g � v� = �− 1�p�f��� fg� � E00v + �− 1�p�f�+p�g��
i=1

n

�� f��ig��
i � v + �
i�j

���if�
�� jg� � Fijv .

Proof: We shall use the usual notation: f =
I, g=
J
K with J� I=� and K� I. Using �A4� and
�A5�, it is easy to see that

t
I · �
J
K � v� = �− 1��I��J�
J�t
I�
K � v + �
j=1

n

�− 1��I��J�−�I�+�J��� j
J��
I
 j�
K � v ,

and in the second term, we can apply the �0�-action formula given by Lemma A.3, in the special

case of f̃ =
I
 j and g̃=
K, hence,
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t
I · �
J
K � v� = �− 1��I��J�
J�t
I�
K � v + �
i,j=1

n

�− 1��I��J�−�I�+�J��� j
J�����i
I
j�
�
i
K�� � v + �

− 1��I�+1�
j=1

n

�
r�s

�− 1��I��J�−�I�+�J��� j
J�����r�s
I
j�

K� � Frsv . �A14�

It remains to see that the three terms in the above equation correspond exactly to the terms in the
statement. In order to do it, let us consider the first term of �A14�, and using �A5�, we obtain

�− 1��I��J�
J�t
I�
K � v = �− 1��I��J�
J �
L�K

�sgn�˜ L
K−L�t
I−L� � v = �K,I�sg�̃�− 1��I��J�
J � E00v

�A15�

since deg�t
I−L�= �I−L� has to be 0, i.e., we have only one summand that corresponds to L= I and
we must have K= I. Observe that the term L= I corresponds to take all the brackets against

k1

, . . . ,
kl
, if K= �k1 , . . . ,kl�, hence it allows us to compute the sign in �A15�, obtaining

�− 1��I��J�
J�t
I�
K � v = �K,I�− 1��I��J�+�I���I�+1�/2
J � E00v = �− 1�p�f�� fg ,

where we used �A10� to prove the last equality, getting the first term of the statement.
Now, let us consider the second term in �A14� and observe on it the expressions �� j
J� and

���i
I
j�

i
K. In order to be nonzero, we must have i= j and j�J. Therefore,

�
i,j=1

n

�− 1��I��J�−�I�+�J��� j
J�����i
I
j�
�
i
K�� � v = �

j�J

�− 1��I��J�−�I�+�J��� j
J�����j
I
j�
�
 j
K�� � v

= �
j�J

�− 1��I��J�+�J��� j
J���I�
 j
K�� � v

= �
j�J

�− 1��J�−�I��I��� j
J�
 j
K� � v = �
j�J

�

− 1��J�−�I�+�K��I��� j
J�
K
 j� � v = �
j�J

�

− 1��J�−�I�+�K��I��� j
J
K�
 j� � v = �
j�J

�− 1��J�−�I�+�K�

���I�� j
J
K��
 j � v = �
j=1

n

�− 1�p�f�+p�g��� f�� jg��
 j � v ,

proving that it corresponds to the second term of the statement of this lemma.
Finally, consider the last term in �A14�. Observe that the expression ���r�s
I
j�


K implies that
r= j or s= j. Therefore, this last term can be rewritten as follows:

�− 1��I�+1�
j=1

n

�
r�s

�− 1��I��J�−�I�+�J��� j
J�����r�s
I
j�

K� � Frsv = − �

j=1

n

�− 1��I��J�+�J��� j
J���
i�j

����i�j
I
j�

K�

� Fijv + �
j�i

����j�i
I
j�

K� � Fjiv� = − �

j=1

n

�− 1��I��J�+�J�+�I��� j
J���
i�j

����i
I�

K� � Fijv

− �
j�i

����i
I�

K� � Fjiv� = �

j�J
� �

i�j,i�I

���i
I�
��� j
J�
K� � Fijv − �

j�i,i�I

���i
I�
��� j
J�
K� � Fjiv�

= �
j�J

�
i�I

���i
I�
��� j
J�
K� � Fijv �since Fij = − Fji� = �

j�J
�
i�I

���if�
�� jg� � Fijv = �

i�j

���if�
�� jg�
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� Fijv ,

finishing the proof.
The following lemma gives us the �2-coefficient of the �-action.
Lemma A.5: For any monomial elements f =
I ,g=
L with I��, we have

�1

2
t2f� · �g � v� = �− 1�p�f��

i�j

� f��i� jg� � Fijv .

Proof: Using �A5�, we have

t2
I · 
J
K � v = �
L�K

�sgn�
J
K−L�t2
I−L� � v + �
j�J

�
L�K

2�sgn�
J−�j�
K−L�t
I−L
 j� � v

+ �
�i,j��J,i�j

�
L�K

2�sgn�
J−�i,j�
K−L�
I−L
i
 j� � v �A16�

for certain signs that depend on the parameters. Now, observe that the first two terms in �A16� are
0 because deg�t2
I−L��2 and deg�t
I−L
 j��1 since j� I. Using that deg�
I−L
i
 j��1 for �I−L�
�1, the last term in �A16� is nonzero only if L=K= I, therefore,

t2
I · �
J
K � v� = − �
�i,j��J,i�j

2�sgn�i,j
J−�i,j� � Fijv . �A17�

It remains to compute the sign �sgn�i,j and rewrite �A17� as in the statement of this lemma.
Suppose that 
J=
�¯
i¯
 j¯
*, then the term that appears in �A17� is obtained �super�

commuting the 
’s, namely,

t2
I · 
� ¯ 
i ¯ 
 j ¯ 
*
K � v = �
�i,j��J,i�j

2�− 1��I��i
J+1+��j

J−��i
J+1����I�+1�
� ¯ 
i

̂

¯ �t
I
i�
 j ¯ 
*
K � v

= �
�i,j��J,i�j

2�− 1��I��i
J+1+��j

J−��i
J+1����I�+1�+1
� ¯ 
i

̂

¯ 
 j
̂�
I
i
 j� ¯ 
*
K

� v = �
�i,j��J,i�j

2�− 1��I��i
J+1+��j

J−��i
J+1����I�+1�+1+��I�+2���J�−��j

J+1��

� 
� ¯ 
i
̂

¯ 
 j
̂

¯ 
*�
I
i
 j�
K � v = �
�i,j��J,i�j

2�

− 1��I��J�+�i
J+�j

J+1
� ¯ 
i
̂

¯ 
 j
̂

¯ 
*�
I
i
 j�
K � v = − 2�

− 1��I��J��
i�j

��i� j
J��
I
i
 j�
K � v , �A18�

where we used in the last equality that 
J−�i,j�= �−1�i
J+j

J
�i� j
J, and the term �i� j
J implicitly

contains the condition �i , j��J.
Now, in order to move through 
K, we may apply the �0�-action formula or make the direct

computation recalling that the only surviving term corresponds to the case L=K= I in �A16�,
namely, it is nonzero if K= I and we have to take all the brackets, that is, if 
I=
i1

¯
is
, then

�
I
i
 j� · �
I � v� = �− 1��I��
i2
¯ 
is


i
 j�
i2
¯ 
is

� v = �− 1��I�+��I�−��+¯+1
i
 j � v = �− 1��I���I�+1�/2
i
 j

� v . �A19�

Now, inserting �A19� into �A18�, we have

063507-22 Boyallian, Kac, and Liberati J. Math. Phys. 51, 063507 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



t2
I · �
J
K � v� = 2�I,K�− 1��I��J�+�I���I�+1�/2�
i�j

��i� j
J� � Fijv . �A20�

On the other hand, if f =
I and g=
J
K, with K� I ,J� I=�, then � f��i� jg��0 if and only if K
= I and �i , j��J. Hence, it captures the above conditions. Finally, observe that

� f��i� jg� = � f��i� j�
J
K�� = � f��i��� j
J�
K + �− 1��J�
J��i
K��� = � f���i� j
J�
K� = �− 1��I���J�−2���i� j
J�

��� f
K� = �I,K�− 1��I��J�+�I���I�−1�/2��i� j
J� �by �A1�� , �A21�

replacing �A21� in �A20�, we prove the lemma.
A simple computation shows that Theorem 4.1 also holds for f =
�.

APPENDIX B: PROOF OF THEOREM 5.1

This appendix will be devoted to the proof of the classification of singular vectors in Theorem
5.1. First, we shall consider some technical results.

Let m� � Ind�V�=C��� � 	�n� � V be a singular vector, then

m� = �
k=0

N

�
I

�k�
I � vI,k� with vI,k � V .

In order to obtain the singular vectors, we need some reduction lemmas. In Lemmas B.1–B.4,
we prove that N�1 and �I��n−2. In Lemma B.5, the case N=1 is discarded for n�4, and in the
case n=3, we explicitly found the corresponding singular vector. Finally, the proof of Theorem 5.1
is completed at the end of this appendix.

Lemma B.1: If m� � Ind�V� is a singular vector, then the degree of m� in � is at most 2.
Proof: Using Theorem 4.3 for f =1 and �S1�, we have

0 =
d2

d�2 �1�m� � = �
k=2

N

�
I

k�k − 1��� + ��k−2��− 2���
I � vI,k� + ��
I � E00vI,k − n�1 − ��I�,n�
I � vI,k�

− �2�
i�j


i
 j
I � FijvI,k� + �
k=1

N

�
I

2k�� + ��k−1�
I � E00vI,k − n�1 − ��I�,n�
I � vI,k − 2��
i�j


i
 j
I

� FijvI,k� − ��
k=0

N

�
I

�� + ��k2�
i�j


i
 j
I � FijvI,k� . �B1�

Rewriting � as ��+��−�, we can consider �B1� as a polynomial in �+� and �. Then the terms in
��+��k�2 give us

0 = �
I

�
i�j


i
 j
I � FijvI,k for all k � 2. �B2�

Using it and considering the coefficient of ��+��l� in �B1� for l�1, we have

0 = �
I


I � �E00vI,k − n�1 − ��I�,n�vI,k + 2vI,k� for all k � 2.

Hence,

E00vI,k − n�1 − ��I�,n�vI,k = − 2vI,k for all k � 2. �B3�

Now, using �B2� and �B3� and taking the coefficient of ��+��l in �B1�, for l�2, we obtain
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0 = �
I

��− 2�k�k − 1�
I � vI,k + 2k
I � �E00vI,k − n�1 − ��I�,n�vI,k�� = �
I

�− 2�k�k + 1�
I

� vI,k for all k � 2,

getting vI,k=0 for all I and k�2, finishing the proof.
From the previous lemma, any singular vector has the form

m� = �2��
I


I � vI,2� + ���
I


I � vI,1� + ��
I


I � vI,0� .

Now, we shall introduce a very important notation. Observe that the formula for the action
given by Theorem 4.3 has the form

f��g � v� = �a + b + �B + �2C = �� + ��a + b + ��B − a� + �2C ,

by taking the coefficients in � and � j. Using it, we can write the �-action for the singular vector m�
of degree 2 in � as follows:

f�m� = ��� + ��a0 + b0 + ��B0 − a0� + �2C0� + �� + ����� + ��a1 + b1 + ��B1 − a1� + �2C1� + ��

+ ��2��� + ��a2 + b2 + ��B2 − a2� + �2C2� .

For example,

C2 = − �
I

�
i�j

�− 1���f ���f �+1�/2�+�f ��I�f
i
 j
I � FijvI,2.

Obviously, these coefficients depend also in f , and sometimes we shall write, for example, a2�f� to
emphasize the dependence, but we will keep it implicit in the notation if no confusion may arise.

In order to study conditions �S1�–�S3�, we need to compute

�f�m� �� = B0 + 2�C0 + ��� + ��a1 + b1 + ��B1 − a1� + �2C1� + �� + ���B1 + 2�C1� + 2�� + �����

+ ��a2 + b2 + ��B2 − a2� + �2C2� + �� + ��2�B2 + 2�C2�

and

�f�m� �� = 2C0 + 2B1 + 4�C1 + 2�� + ��C1 + 2��� + ��a2 + b2 + ��B2 − a2� + �2C2� + 4�� + ���B2

+ 2�C2� + 2�� + ��2C2.

Therefore, by taking coefficients in ��+��i� j, conditions �S1�–�S3� translate into the following list:

• For all f �	�n�:

0 = C2,

C1 = a2 = − B2,

0 = C0 + B1 + b2. �B4�

• For f =
I with �I��1:

0 = a2 = B2,

0 = a1 + B1 + 2b2,

0 = B0 + b1. �B5�
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• For f =
I, with �I��3 or f �Bso�n�:

a1 = − b2,

a0 = − b1,

0 = b0. �B6�

Lemma B2: The following conditions hold in a singular vector.

�1� If �I��n, vI,2=0.
�2� If �I��n−3, vI,1=0.
�3� If �I��n−5, vI,0=0.

Proof:
�1� Using �B5�, we have a2=0 if f =
J with �J��1, that is,

0 = �
I

�− 1���J���J�+1�/2�+�J��I���J� − 2��
J
I � vI,2� .

Now, suppose there exists I such that vI,2�0 with �I��n−1. Let I0 be one set of minimal length
with this property. Then,

0 = a2�f� = �
�I���I0�

�sgn�I,f��f � − 2��f
I � vI,2� .

Then take f =
I0
c if �I0

c��2 �where from now on Ac denotes the complement of A in �1, . . . ,n��, and
take f =
i0

for a fixed i0� I0 if �I0
c�=2. Then, we compute a2�f� with this choice of f , obtaining

0 = �sgn���I0
c� − 2�
* � vI0,2 if �I0

c� � 2,

and, if �I0
c�=2, we have

0 = �sgn�
i0

I0

� vI0,2 + �sgn�
* � vI0��i1�,2 + �
i�I0

�sgn�
�i�c � vI0��i1�\�i�,2,

where i1 satisfies J0� �i0 , i1�= �1, . . . ,n�, and 
*=
1¯
n as before. Hence vI0,2=0, finishing the
proof of case �1�.

�2� Using case �1�, observe that for f =
I with �I��3, we have

b2�f� = �
j=1

n

�sgn� j,f�� j f��� j
*� � v*,2 − �
r�s

��r�sf�
* � Frsv*,2 = 0.

Therefore, using �B6�, we get a1�
I�=0 for �I��3.
Now, suppose there exists J such that vJ,1�0 with �J��n−3, and take J0 with minimal length

satisfying this property. Then, since �J0
c��3, we have

0 = a1�
J0
c� = �

�J���J0�
�sgn���J0

c� − 2�
J0
c
J � vJ,1 = K
* � vJ0,1, K � 0,

proving that vJ0,1=0.
�3� Since vJ,1=0 for �J��n−3 �by the previous proof�, it is easy to see that b1�
I�=0 if �I�

�5. Then, by �B6�, we have that a0�
I�=0 if �I��5. Hence, vJ,0=0 if �J��n−5, finishing the
proof. �

After this lemma, we have that any singular vector has this form
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m� = �2
* � v*,2 + � �
�I��n−2


I � vI,1 + �
�I��n−4


I � vI,0.

Now, we shall continue with more reduction lemmas:
Lemma B.3: If n�3, then v*,2=0.

Proof: Using �B4�, we have a2�f�=c1�f� for any f . In particular, taking f =1, we have, on the
one hand,

a2�1� = − 2
* � v*,2,

and, on the other hand,

c1�1� = − �
i�j

�
�J��n−2


i
 j
J � FijvJ,1 = − �
i�j

�− 1�i+j−1
* � Fij�v�i, j�c,1� ,

since we must take J= �i , j�c and 
i
 j
�i , j�c = �−1�i+j−1
*. Therefore,

2v*,2 = − �
i�j

�− 1�i+jFij�v�i, j�c,1� . �B7�

Now, we shall study condition a1+B1+2b2=0 for �f ��1, and compare it with �B7�. Fix f
=
i0

and observe that

b2�f� = �− 1�1+n�i0

* � v*,2 = �− 1�i0+n
�i0�c � v*,2. �B8�

Then, from the last equation, we need to pick up the term with 
�i0�c in a1�f� and B1�f�. Since

a1�f� = �
�I��n−2

�− 1��I�
i0

I � vI,1,

then a1�f� does not have terms without 
i0
. On the other hand,

B1�f� = �
�I��n−2

�− 1��I�+1
i0

I � E00vI,1 + �

i�i0

�
�I��n−2

�− 1��I�+1�i�
i0

i
I� � vI,1

− �
i�j

�
�I��n−2

�− 1��I�+1��i
i0
�
 j
I � FijvI,1, �B9�

hence, only the last summand of �B9� has the term 
�i0�c, and this is possible only if I= �j , i0�c, i
= i0 and j� i0, namely,

�term 
�i0�c in B1�f�� = − �
j�i0

�− 1�n+1
 j
�j, i0�c � Fi0j�v�j, i0�c,1� = − �
j�i0

�− 1�n+j
�i0�c � Fi0j�v�j, i0�c,1�

− �
j�i0

�− 1�n+1+j
�i0�c � Fi0j�v�j, i0�c,1� , �B10�

where we used that 
 j
�j , i0�c = �−1� j−2
�i0�c if i0� j, and 
 j
�j , i0�c = �−1� j−1
�i0�c, if i0� j. Comparing
�B10� with �B8�, we have

2v*,2 = − �
j�i0

�− 1�i0+j+1Fi0j�v�j, i0�c,1� − �
i0�j

�− 1�i0+jFi0j�v�j, i0�c,1� = − �
j�i0

�− 1�i0+jFji0
�v�j, i0�c,1�

− �
i0�j

�− 1�i0+jFi0j�v�j, i0�c,1� , �B11�

where we used in the last equality that Fi0j =−Fji0
. Since �B11� holds for all i0, we may take the

sum over i0=1 , . . . ,n and compare it with �B7�, obtaining
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2nv*,2 = 4v*,2,

proving that v*,2=0 for all n�3. �

Lemma B.4: If n�3, then any singular vector in Ind�V� has this form

m� = ��
* � v*,1� + �
�I��n−2


I � vI,0

for certain v*,1, vI,0�V.

Proof:
Claim 1: For all b�c, v�b , c�c,1=0.
Proof of Claim 1: Combining �B4� and �B5�, we have a1�f�=c0�f� for all �f ��1, since b2�f�=0

by the previous lemma. Let us fix b�c. We may suppose b�c. Consider f =
b
c, then �obviously�
a1�f�=0. Hence,

0 = c0�
b
c� = − �
i�j

�
�I�=n−4


b
c
i
 j
I � Fij�vI,0� = − �
i�j;i,j�b,c


b
c
i
 j
�b,c, i, j�c � Fij�v�b,c, i, j�c,0�

which may be rewritten as follows:

0 = �
i�j;i,j�b,c


i
 j
�b,c, i, j�c � Fij�v�b,c, i, j�c,0� . �B12�

On the other hand, fix a�b ,c. By �B4�, b1�
a�+B0�
a�=0. Observe that

b1�
a� = �
�I��n−2

�− 1�1+�I��a
I � vI,1 = �
j�k:j,k�a

�− 1�n−1��a
�j,k�c� � v�j,k�c,1 + �
i�a

�− 1�n��a
�i�c� � v�i�c,1

+ �− 1�n+1�a
* � v*,1. �B13�

Now,

�term 
�a,b,c�c of b1�
a�� = �− 1�n−1��a
�b,c�c� � v�b,c�c,1. �B14�

Similarly,

B0�
a� = �
�I��n−4

�− 1�1+�I�
a
I � E00vI,0 + �
i

�
�I��n−4

�− 1�1+�I��i�
a
i
I� � vI,0 − �
�I��n−4

�
i�j

�− 1�1+�I�

���i
a�
 j
I � Fij�vI,0� . �B15�

Obviously, the term 
�a , b , c�c will appear in �B15� only in the last sum, for certain values of I,
namely,

�term 
�a,b,c�c of B0�
a�� = − �
l�a,b,c

�− 1�n−1
l
�a,b,c, l�c � Fa,l�v�a,b,c, l�c,0� . �B16�

Using �B14� and �B16� and the fact that 0=b1�
a�+B0�
a�, we get

0 = H�a� ª ��a
�b,c�c� � v�b,c�c,1 − �
l�a,b,c


l
�a,b,c, l�c � Fa,l�v�a,b,c, l�c,0� .

Now, moving a, we may take
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0 = �
a�b,c


a · H�a� = �
a�b,c


a��a
�b,c�c� � v�b,c�c,1 − �
a�b,c

�
l�a,b,c


a
l
�a,b,c, l�c � Fa,l�v�a,b,c, l�c,0�

= �
a�b,c


a��a
�b,c�c� � v�b,c�c,1 − �
a�l;a,l�b,c


a
l
�a,b,c, l�c � Fa,l�v�a,b,c, l�c,0� − �
l�a;a,l�b,c


a
l
�a,b,c, l�c

� Fa,l�v�a,b,c, l�c,0�

and using that 
a
l=−
l
a, Fa,l=−Fl,a, and 
a��a
�b , c�c�=
�b , c�c, the last equation becomes

0 = �
a�b,c


�b,c�c � v�b,c�c,1 − 2� �
a�l;a,l�b,c


a
l
�a,b,c, l�c � Fa,l�v�a,b,c, l�c,0�� = �
a�b,c


�b,c�c

� v�b,c�c,1 �using �B12�� = �n − 2��
�b,c�c � v�b,c�c,1� ,

proving Claim 1 for n�3.
Claim 2: For all b, v�b�c,1=0.
Proof of Claim 2: The idea is similar to the proof of Claim 1, but taking other monomial

terms.
Fix b. As in Claim 1, we have a1�f�=C0�f� for all �f ��1. In particular, since

C0�
b� = − �
�I��n−4

�
i�j

�− 1��I�+1
b
i
 j
I � Fij�vI,0� ,

we have

�term 
* of C0�
b�� = − �
i�j;i,j�b

�− 1�n
b
i
 j
�b, i, j�c � Fij�v�b, i, j�c,0� ,

and it is easy to see that

�term 
* of a1�
b�� = �− 1�n−1
b
�b�c � v�b�c,1.

Therefore,


�b�c � v�b�c,1 = �
i�j;i,j�b


i
 j
�b, i, j�c � Fij�v�b, i, j�c,0� . �B17�

Now, take a�b. Using �B13�, we obtain

�term 
�a,b�c of b1�
a�� = �− 1�n��a
�b�c� � v�b�c,1. �B18�

Similarly, using �B15�

�term 
�a,b�c of B0�
a�� = − �
l�a,b

�− 1�n−2
l
�a,b, l�c � Fa,l�v�a,b, l�c,0� . �B19�

Using �B18� and �B19� and the fact that 0=b1�
a�+B0�
a�, we get

0 = L�a� ª �a
�b�c � v�b�c,1 − �
l�a,b


l
�a,b, l�c � Fa,l�v�a,b, l�c,0� .

Now, moving a, we may take
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0 = �
a�b


a · L�a� = �
a�b


a��a
�b�c� � v�b�c,1 − �
a�b

�
l�a,b


a
l
�a,b, l�c � Fa,l�v�a,b, l�c,0� = �
a�b


�b�c � v�b�c,1

− �
a�l;a,l�b


a
l
�a,b, l�c � Fa,l�v�a,b, l�c,0� − �
l�a;a,l�b


a
l
�a,b, l�c � Fa,l�v�a,b, l�c,0� = �n − 1��
�b�c

� v�b�c,1� − 2� �
a�l;a,l�b


a
l
�a,b, l�c � Fa,l�v�a,b, l�c,0�� = �n − 3��
�b�c � v�b�c,1� �using �B17�� .

Hence, v�b�c,1=0 for all b and n�4.
If n=3, the condition a1�
b�=C0�
b� gives us

v�b�c,1 = Fij�v�,0� , �B20�

where �b�c= �i , j� and i� j. On the other hand, by taking the term 
b of b0�
1
2
3� and using that
b0�
1
2
3�=0, we obtain that Fij�v�,0�=0 for all i� j, which, combined with �B20�, produces the
desired result, finishing the proof of Claim 2.

Finally, in order to complete the proof of this lemma, we need to study the vectors vI,0. Since
vI,1=0 if �I��n−1, it is clear that b1�f�=0 for �f ��3. Therefore, using condition �B6�, we have
a0�f�=0 if �f ��3, which immediately gives us that vI,0=0 if �I�=n−3 or n−4, completing the
proof. �

From the previous lemma, any singular vector has this form

m� = ��
* � v*,1� + �
�I��n−2


I � vI,0.

Using �4.1�, �A1�, and �4.4�, the Z-gradation in K�1,n�+ translates into a Z�0-gradation in Ind�V�,

Ind�V� � 	�1,n� � V � C��� � 	�n� � V � C1 � V
deg 0

� Cn
� V

deg −1
� �C� � V � 	2�Cn� � V�

deg −2
� ¯ .

Therefore, in the previous lemmas, we have proved that any singular vector must have degree −1
or −2.

Recall that in Theorem 4.3, we considered the Hodge dual of the natural bases in order to
simplify the formula of the action. Hence, any singular vector must have one of the following
forms:

�1� m� =��
* � v*�+�i�j
�i , j�c � v�i,j�.
�2� m� =�i
�i�c � vi.

The next lemma studies the first one.
Lemma B.5: If n�3, the first case is not possible. If n=3, then

m� = ��
* � v�� + i
�1,2�c � v� − 2
�2,3�c � F2,3v� + 2
�1,3�c � F1,3v�

is a singular vector, where v� is the highest weight vector of the cso�3�-module of the highest
weight �= � 3

2 ; 1
2

�.
Proof: From now on, we assume that m� =��
* � v*�+�i�j
�i , j�c � v�i,j�. Observe that conditions

�B4�–�B6� clearly become

�1� b1�f�=0, if f �Bso�n�.
�2� b1�f�+B0�f�=0, if �f �=1 or 2.
�3� C0�f�+B1�f�=0, if f =1.
�4� b0�f�=0, if �f �=3,4 or f �Bso�n�.

It is possible to see that they are equivalent to the following equations in terms of the vectors
v�i,j� and v*:

b1�f�=0, if f �Bso�n�:
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Bso�n� · v* = 0. �B21�

b1�
a�+B0�
a�=0: �1�a�n�

− v* = �
j�a

�− 1�a+jFja�v�j,a�� + �
a�j

�− 1�a+jFaj�v�a,j�� �B22�

for a�b,

0 = E00�v�a,b�� − v�a,b� − �
j�b,j�a

�− 1�a+jFaj�v�j,b�� + �
b�j

�− 1�a+jFaj�v�b,j�� , �B23�

and for b�a,

0 = E00�v�a,b�� − v�a,b� + �
j�b

�− 1�a+jFaj�v�j,b�� − �
b�j,j�a

�− 1�a+jFaj�v�b,j�� . �B24�

b1�
a
b�+B0�
a
b�=0: �a�b�

0 = − Fab�v*� + �− 1�a+bE00�v�a,b�� − �
j�b,j�a

�− 1�b+jFaj�v�j,b�� + �
b�j

�− 1�b

+jFaj�v�b,j�� + �
j�a

�− 1�a+jFbj�v�a,j�� − �
a�j,j�b

�− 1�a+jFbj�v�a,j�� . �B25�

C0�1�+B1�1�=0:

0 = E00�v*� + �
i�j

�− 1�i+jFij�v�i,j�� . �B26�

Finally, in the case of condition b0�f�=0, if �f �=3,4 or f �Bso�n�, we shall only need the following
equations that are deduced from b0�
a
b
c�=0, with a�b�c,

0 = �− 1�b+cv�b,c� + �− 1�a+cFab�v�a,c�� − �− 1�a+bFac�v�a,b�� , �B27�

0 = �− 1�a+cv�a,c� − �− 1�b+cFab�v�b,c�� + �− 1�a+bFbc�v�a,b�� , �B28�

0 = �− 1�a+bv�a,b� + �− 1�b+cFac�v�b,c�� − �− 1�a+cFbc�v�a,c�� . �B29�

Now, fix a�b, by taking a linear combination of �B23� and �B24�, we obtain

0 = − 2�− 1�a+bE00�v�a,b�� + 2�− 1�a+bv�a,b� + �
j�b,j�a

�− 1�b+jFaj�v�j,b�� − �
b�j

�− 1�b+jFaj�v�b,j��

− �
j�a

�− 1�a+jFbj�v�a,j�� + �
a�j,j�b

�− 1�a+jFbj�v�a,j��

and, comparing the last four summands with �B25�, we obtain

Fab�v*� = �− 1�a+b+1E00�v�a,b�� + 2�− 1�a+bv�a,b�. �B30�

On the other hand, observe that �B25� can be rewritten as follows �a�b�:
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0 = − Fab�v*� + �− 1�a+bE00�v�a,b�� − �
j�a

��− 1�b+jFaj�v�j,b�� − �− 1�a+jFbj�v�a,j���

− �
a�j�b

��− 1�b+jFaj�v�j,b�� + �− 1�a+jFbj�v�a,j��� − �
b�j

��− 1�b+j+1Faj�v�j,b�� + �− 1�a+jFbj�v�a,j��� .

�B31�

Therefore, inserting �B27�–�B29� into the last three summands of �B31�, we have

Fab�v*� = �− 1�a+bE00�v�a,b�� − �n − 2��− 1�a+bv�a,b�. �B32�

Hence, using �B30� and �B32�, we get

E00�v�a,b�� =
n

2
v�a,b�

and

2Fab�v*� = �n − 4��− 1�a+b+1v�a,b�, �B33�

or, with some restrictions,

v�a,b� = �− 1�a+b+1 2

�n − 4�
Fab�v*�, n � 4. �B34�

Now, combining �5.3�, �B21�, and �B34�, it easy to prove the following identities �1� l� j
�m�:

v�2l,2j� = iv�2l−1,2j�, �B35�

v�2l−1,2j−1� = − iv�2l,2j−1�, �B36�

v�2l−1,2m+1� = − iv�2l,2m+1�. �B37�

Taking the sum over a in �B22� and using �B26�, we get

nv* = − 2�
i�j

�− 1�i+jFij�v�i,j�� = 2E00�v*� ,

obtaining

E00�v*� =
n

2
v*. �B38�

Let �= �n /2;�1 , . . . ,�m� be the weight of the highest weight vector v* �see �B21� and �B38��.
Since H1= iF12, then by �B34�, we have

v1,2 = − 2i
�1

�n − 4�
v*. �B39�

Now, considering �B22� with a=1, and using �B35�–�B39�, we have
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v* = − �
1�j

�− 1�1+jF1j�v�1,j�� = − iH1�v1,2� − �
1�l�m

F1,2l−1�v�1,2l−1�� + �
1�l�m

F1,2l�v�1,2l��

− �n,oddF1,2m+1�v�1,2m+1�� = − 2
�1

�n − 4�
H1�v*� + i �

1�l�m

F1,2l−1�v�2,2l−1�� − i �
1�l�m

F1,2l�v�2,2l��

+ i�n,oddF1,2m+1�v�2,2m+1�� ,

that is,

v* = − 2
�1

2

�n − 4�
v* + i�

2�j

�− 1�1+jF1,j�v�2,j�� . �B40�

Considering �B23� with a=1, b=2, and inserting �B39� and �B40� on it, it is easy to see that

0 = 2�1
2 + �n − 2��1 + �n − 4� , �B41�

obtaining �1=−1 or �4−n� /2, which is negative for n�5 and it is impossible for the highest
weight of an irreducible so�n�-module, finishing the proof in this case.

If n=3, observe that Eqs. �B34�, �B38�, �B39�, and �B41� hold in this case, obtaining the result
of the statement of this lemma.

If n=4, using �B33� we have va,b=0 for all a�b, obtaining a trivial singular vector and
finishing the proof. �

From now on, we assume that the singular vector has the form m� =�i
�i�c � vi, and we shall use
the following notation for n=2m or n=2m+1:

m� = �
i=1

n


�i�c � vi = �
l=1

m

��
�2l�c + i
�2l − 1�c� � wl + �
�2l�c − i
�2l − 1�c� � w̄l� − �n,oddi
�2m + 1�c � wm+1,

�B42�

that is, for 1� l�m,

v2l = wl + w̄l, v2l−1 = i�wl − w̄l�, v2m+1 = iwm+1. �B43�

Observe that conditions �B4�–�B6� clearly reduce to

�1� If �f �=1, B0�f�=0.
�2� If �f �=3 or f �Bso�n�, b0�f�=0.

After some lengthly computations, it is possible to see that they are equivalent to the follow-
ing equations in terms of the vectors vi ,wl , w̄k:

B0�
a�=0:

0 = �− 1�aE00va − �
k�a

�− 1�kFakvk. �B44�

b0�
a
b
c�=0, with a�b�c:

0 = �− 1�cFab�vc� − �− 1�bFac�vb� + �− 1�aFbc�va� . �B45�

Recall the basis of the Borel subalgebra introduced in �5.4� and �5.5�, and using that

term with 
�a�c in b0�
a
b� = �− 1�a+bvb + Fab�va� ,

term with 
�b�c in b0�
a
b� = − �− 1�a+bva + Fab�vb� ,
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term with 
�l�c in b0�
a
b� = Fab�vl�, l � a,b ,

condition b0�f�=0 for f �Bso�n� becomes for n=2m or n=2m+1,
b0��ij�=0, with 1� i� j�m:

�ij�wi� = 0, �B46�

�ij�w̄i� = wj − w̄j , �B47�

�ij�wj� = wi = − �ij�w̄j� , �B48�

�ij�wk� = 0 = �ij�w̄k�, k � i, j . �B49�

b0��lj�=0, with 1� l� j�m:

�ij�wi� = 0, �B50�

�ij�w̄i� = − �wj + w̄j� , �B51�

�ij�wj� = wi = �ij�w̄j� , �B52�

�ij�wk� = 0 = �ij�w̄k�, k � i, j . �B53�

b0��k�=0, with 1�k�m, and n=2m+1, corresponds to

�k�wk� = 0, �B54�

�k�w̄k� = wm+1, �B55�

�k�wm+1� = 2wk, �B56�

�k�wl� = 0 = �k�w̄l�, 1 � l � m, l � k . �B57�

Now, we shall impose conditions �B44� and �B57� to get the final reduction. Recall notations
�5.1� and �5.2�.

Lemma B.6: If n=2m or n=2m+1, Eq. (B44) is equivalent to the following identities �1� j
�m�:

2�E00 + Hj��w̄j� = �
1�l�j

�E−�l+j�
�wl� − E�l−j�

�w̄l�� + �
j�l�m

�E−�j−l�
�w̄l� − E−�j+l�

�wl��

− �n,oddE−j
�wm+1� �B58�

and

2�E00 − Hj��wj� = �
1�l�j

�E�l+j�
�w̄l� − E−�l−j�

�wl�� + �
j�l�m

�E�j−l�
�wl� − E�j+l�

�w̄l��

+ �n,oddEj
�wm+1� , �B59�

and for n=2m+1, we we have the additional equation

E00�wm+1� = �
1�l�m

�El
�w̄l� − E−l

�wl�� .
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Proof: It follows by a straightforward computation, by considering a linear combination of Eq.
�B44� for the cases where a is 2j and 2j−1, and replacing the vectors vi’s in terms of wi’s and w̄i’s.
The last equation follows from �B44� for a=2m+1. �

Proof of Theorem 5.1: Suppose that n=2m or n=2m+1, with m�2. Case n=3 will be
considered at the end of this proof.

Using �B52� and �B56�, we have that wi�0 implies that wj�0 for all i� j. Now, we shall
show that there are only two possible cases: wi�0 for all i, or wi=0 for all i. Suppose that wj

�0 for some j, and let j0 be the minimal index j such that wj�0. Then wj0
is the highest weight

vector, by using �B48�, �B52�, and �B56�. Now, suppose 1� j0�m. Using �B43�, we have that Eq.
�B45�, for a=1, b=2, and c=2j0 with j0�1, becomes

0 = F1,2�wj0
+ w̄j0

� − F1,2j0
�w1 − w̄1� − iF2,2j0

�w1 − w̄1� , �B60�

and for a=1, b=2, and c=2j0−1 with j0�1, it becomes

0 = iF1,2�wj0
− w̄j0

� + F1,2j0−1�w1 + w̄1� + iF2,2j0−1�w1 − w̄1� . �B61�

Now, taking the linear combination �B61� +i �B60�, and using �B48� together with �B52�, we have

H1�wj0
� = − wj0

,

which is impossible for the highest weight vector. Similarly, if n is odd and j0=m+1, by consid-
ering �B43�, we have that Eq. �B45�, with a=1, b=2, and c=2m+1, becomes H1�wm+1�=−wm+1,
getting a contradiction. Therefore, all wi’s are zero or all of them are nonzero.

�a� If wi=0 for all i, then w̄j�0 for some j. Let j0 be the maximal one with this property. As
before, observe that w̄j0

is annihilated by the Borel subalgebra by using �B47�, �B49�, �B51�,
�B55�, and �B57�, hence w̄j0

is the highest weight vector. Now, we shall prove that j0=1.
Suppose that j0�1, then taking the linear combination �B61� −i �B60�, and using �B48�
together with �B52�, we have

H1�w̄j0
� = − w̄j0

,

which is impossible for the highest weight vector. Therefore, in this case, the singular vector
has the form

m� = �
�2�c − i
�1�c� � w̄1

as in part �a� of the statement of this theorem. Recall that w̄1 is the highest weight vector of
V=V���. It remains to find necessary and sufficient conditions on the highest weight � in
order to get a singular vector of this form. Observe that we only have to impose �B44� and
�B45�. Using Lemma B.6, we obtain that it reduces to the following conditions:

E00�w̄1� = − H1�w̄1� and Hj�w̄1� = 0 for j � 1.

Hence, �= �−k ;k ,0 , . . . ,0�, finishing part �a� of this theorem.
�b� If wi�0 for all i, we should obtain part �b� of the present theorem. Using �B52�, we have

w̄j�0 for all 1� j�m. It remains to prove that w̄1�0. If not, combining �B47� and �B51�
we get a contradiction. Therefore, all wi’s and w̄j’s are nonzero. Observe that w1 is annihi-
lated by the Borel subalgebra by using �B46�, �B49�, �B50�, �B53�, �B54�, and �B57�.
Therefore, w1 is the highest weight vector of V=V���. It remains to find conditions on the
highest weight � in order to get a singular vector of this form, and we should also show that
all wi’s and w̄j’s are fully determined by w1.

Let us compute �. Using �B43�, we have that Eq. �B45�, with a=1, b=2j−1, and c=2j for
j�1, becomes
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0 = F1,2j−1�wj + w̄j� + iF1,2j�wj − w̄j� − iF2j−1,2j�w1 − w̄1� , �B62�

and for a=2, b=2j−1, and c=2j for j�1, it becomes

0 = F2,2j−1�wj + w̄j� + iF2,2j�wj − w̄j� + F2j−1,2j�w1 + w̄1� . �B63�

Now, taking the linear combination �B62� −i �B63�, and using �B48� together with �B52�, we have

Hj�w1� = 0 for j � 1.

We have to compute E00�w1� and H1�w1�. Observe that Eq. �B59�, for j=1, becomes

2�E00 − H1��w1� = �
1�l�m

�E�1−l�
�wl� − E�1+l�

�w̄l�� + �n,oddE1
�wm+1�

= �
1�l�m

��1l�wl − w̄l� + �1l�wl + w̄l�� + �n,odd�1�wm+1�

and inserting �B48�, �B52�, and �B56� into the previous equation, we get

E00�w1� = H1�w1� + 2�m − 1�w1 + �n,oddw1.

proving, as the statement of this theorem, that w1 is the highest weight vector of the cso�n�-module
V with the highest weight

��1 + 2�m − 1� + �n,odd;�1,0, . . . ,0� for �1 � Z�0. �B64�

Now, we shall show that all wi’s and w̄j’s are fully determined by w1.
Using �B43�, we have that Eq. �B45�, with a=1, b=2, and c=2k−1 for k�1, becomes

0 = H1�wk − w̄k� + F1,2k−1�w1 + w̄1� + iF2,2k−1�w1 − w̄1� , �B65�

and for a=1, b=2, and c=2k for k�1, it becomes

0 = iH1�wk + w̄k� + F1,2k�w1 + w̄1� + iF2,2k�w1 − w̄1� . �B66�

Now, taking the linear combination �B65� −i �B66�, we have

0 = 2H1�wk� + E−�1−k��w1� + ��1k − �1k��w̄1� ,

and using �B47� together with �B51�, we obtain

0 = 2H1�wk� + E−�1−k��w1� + 2wk. �B67�

Now, by applying �1k to �B67� and using �B52�, it is possible to see that H1�wk�=�1−1, where �1

was defined above as H1�w1�=�1w1. Therefore, from �B67�, we get

wk = −
1

2�1
E−�1−k��w1�, k � 1. �B68�

In a similar way, by taking the linear combination �B65� +i �B66�, we can deduce

w̄k =
1

2�1
E−�1+k��w1�, k � 1. �B69�

In the odd case, taking �B45� with a=1, b=2, and c=2m+1, it is possible to deduce by a similar
computation that

wm+1 = −
1

�1
E−1

�w1� . �B70�
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Considering �B58� for j=1 and using �B68�–�B70�, we have that

2�E00 + H1��w̄1� = �
1�l�m

�E−�1−l�
�w̄l� − E−�1+l�

�wl�� − �n,oddE−1
�wm+1�

=
1

�1
� �

1�l�m

E−�1+l�
E−�1−l�

�w1� + �n,oddE−1
E−1

�w1�� .

Applying E�1+2� to the previous equation, we obtain

�E00 + H1��w̄1� = �2�m − 2 + �1� + �n,odd�w̄1 = �n − 4 + 2�1�w̄1.

Therefore, we have

w̄1 = C� �
1�l�m

E−�1+l�
E−�1−l�

�w1� + �n,oddE−1
E−1

�w1�� , �B71�

where C=1 /2�1�n−4+2�1�. Hence, Eqs. �B68�–�B71� show that all wi’s and w̄j’s are fully
determined by w1.

Conversely, using the expressions of wi’s and w̄j’s, it is possible to prove, after some lengthly
computations, that the vector m� in �B42� satisfies Eqs. �B44�–�B57�, finishing the proof of this
lemma for n�4.

If n=3, all the previous equations hold except for �B71� for �1= 1
2 . More precisely, the same

reduction holds and we have the first family of singular vectors m� = �
�2�c − i
�1�c� � w̄1, where w̄1 is
the highest weight vector of weight �−k ;k�, but, in this case, k� 1

2Z�0. The second family, corre-
sponding to wi�0 for all i, is also present. In this case, using �B64�, w1 is the highest weight
vector of the cso�3�-module V, with the highest weight ��1+1;�1�, but, in this case, �1� 1

2Z�0.
Now, using �B70� and �B71�, we have the complete expression of the singular vector m� , that is �in
this case m=1�,

w2 = −
1

�1
E−1

�w1�, w̄1 =
1

2�1�2�1 − 1�
�E−1

E−1
�w1�� , �B72�

but the last equation makes sense if �1� 1
2 . Observe that in the particular case �1= 1

2 , there is no
singular vector of this form because in this case the so�3�-module V is the two-dimensional
module corresponding to the standard sl�2��so�3� representation, and in this case, w̄1 must be a
linear combination of w1 and w2, which is incompatible with �B55� and �B56�. Finally, observe
that in the case �1= 1

2 , which is the weight � 3
2 ; 1

2
� that we discarded, there is a singular vector, and

it was found in Lemma B.5, finishing the proof of Theorem 5.1. �
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