25 research outputs found

    Feasibility of Natural Salt-licks for Wildlife-Watching in Segaliud-Lokan Forest Reserve, Sandakan, Sabah

    Get PDF
    Natural salt-licks are well-recognized as wildlife-watching hotspots that can provide visitors with high opportunities for sighting many different outstanding mammals at close-range. Various natural salt-licks were discovered throughout Segaliud-Lokan Forest Reserve (SLFR), but then the physical availability of local mammals at given licks were yet to be examined scientifically by past researchers. Henceforth, this study intended to investigate mammal species that were available for wildlife-viewing at the licks in SLFR. Four natural wet licks that were accessible from the main road and situated close to Sungai Rawog were selected as sampling areas to identify mammal species that visited given licks across different times through camera trapping survey. A total of 676 independent sightings of 12 different mammal species were recorded in 197 trap nights, especially at SL59 and during night-time. Sighted mammal individuals were mainly comprised of large-sized, threatened and non-carnivorous species, where Sambar Deer, Bearded Pig, Orang-utan, and Banteng were identified as the top 4 mammal species that were detected frequently at the licks in SLFR. In sum, it is feasible to conduct wildlife-viewing activity at the licks in SLFR, although further research is required to investigate the actual sighting probability and viewing duration of different mammal species by visitors at given licks and across different times or seasons

    The newly synthesized 2-(3-hydroxy-5-methoxyphenyl)-6,7-methylenedioxyquinolin-4-one triggers cell apoptosis through induction of oxidative stress and upregulation of the p38 MAPK signaling pathway in HL-60 human leukemia cells

    Get PDF
    The aim of the present study was to discover the signaling pathways associated with 2-(3-hydroxy-5-methoxy-phenyl)-6,7-methylenedioxyquinolin-4-one (YYK1)-induced apoptosis in HL-60 human leukemia cells. YYK1 induced cytotoxic effects, cell morphological changes, decreased the cell number and increased reactive oxygen species (ROS) production and loss of mitochondrial membrane potential (ΔΨm) in HL-60 cells. YYK1-induced apoptosis was confirmed by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Results from colorimetric assays and western blot analysis indicated that activities of caspase-7/-3, caspase-8 and caspase-9 were increased in YYK1-treated HL-60 cells. Western blot analysis showed that the protein levels of extrinsic apoptotic proteins (Fas/CD95, FasL and FADD), intrinsic related proteins (cytochrome c, Apaf-1, AIF and Endo G), the ratio of Bax/Bcl-2 and phosphorylated p38 MAPK were increased in HL-60 cells after YYK1 treatment. Cell apoptosis was significantly reduced after pre-treatment with N-acetylcysteine (NAC; a ROS scavenger) or diphenyleneiodonium chloride (DPI; a NADPH oxidase inhibitor). Blockage of p38 MAPK signaling by SB202190 abolished YYK1-induced Fas/CD95 upregulation and apoptosis in HL-60 cells. We conclude that YYK1 induces both of extrinsic and intrinsic apoptotic pathways via ROS-mediated activation of p38 MAPK signaling in HL-60 human leukemia cells in vitro

    A multilevel analysis of neighborhood and individual effects on individual smoking and drinking in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We assessed direct effects of neighborhood-level characteristics and interactive effects of neighborhood-level characteristics and individual socioeconomic position on adult smoking and drinking, after consideration of individual-level characteristics in Taiwan.</p> <p>Methods</p> <p>Data on individual sociodemographic characteristics, smoking, and drinking were obtained from Taiwan Social Change Survey conducted in 1990, 1995, and 2000. The overall response rate was 67%. A total of 5883 women and men aged over 20 living in 434 neighborhoods were interviewed. Participants' addresses were geocoded and linked with Taiwan census data for measuring neighborhood-level characteristics including neighborhood education, neighborhood concentration of elderly people, and neighborhood social disorganization. The data were analyzed with multilevel binomial regression models.</p> <p>Results</p> <p>Several interaction effects between neighborhood characteristics and individual socioeconomic status (SES) were found in multilevel analyses. Our results indicated that different neighborhood characteristics led to different interaction patterns. For example, neighborhood education had a positive effect on smoking for low SES women, in contrast to a negative effect on smoking for high SES women. This result supports the hypothesis of "relative deprivation," suggesting that poor people living in affluent neighborhoods suffer from relative deprivation and relative standing. On the other hand, neighborhood social disorganization has positive effects on drinking for low SES individuals, but not for high SES individuals. These interactive effects support the hypothesis of the double jeopardy theory, suggesting that living in neighborhoods with high social disorganization will intensify the effects of individual low SES.</p> <p>Conclusion</p> <p>The findings of this study show new evidence for the effects of neighborhood characteristics on individual smoking and drinking in Taiwan, suggesting that more studies are needed to understand neighborhood effects in Asian societies.</p

    Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking

    Get PDF
    The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry techniques are well-suited to high-throughput characterization of natural products, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social molecular networking (GNPS, http://gnps.ucsd.edu), an open-access knowledge base for community wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of ‘living data’ through continuous reanalysis of deposited data

    Ugonin U stimulates NLRP3 inflammasome activation and enhances inflammasome-mediated pathogen clearance

    No full text
    The NOD-like receptor pyrin domain 3 (NLRP3) inflammasome contains Nod-like receptors, a subclass of pattern recognition receptors, suggesting that this complex has a prominent role in host defenses. Various structurally diverse stimulators activate the NLRP3 inflammasome through different signaling pathways. We previously reported that ugonin U (UgU), a natural flavonoid isolated from Helminthostachys zeylanica (L) Hook, directly stimulates phospholipase C (PLC) and triggers superoxide release in human neutrophils. In the present study, we showed that UgU induced NLRP3 inflammasome assembly and subsequent caspase-1 and interleukin (IL)-1β processing in lipopolysaccharide-primed human monocytes. Moreover, UgU elicited mitochondrial superoxide generation in a dose-dependent manner, and a specific scavenger of mitochondrial reactive oxygen species (ROS) diminished UgU-induced IL-1β and caspase-1 activation. UgU induced Ca2+ mobilization, which was inhibited by treatment with inhibitors of PLC or inositol triphosphate receptor (IP3R). Blocking Ca2+ mobilization, PLC, or IP3R diminished UgU-induced IL-1β release, caspase-1 activation, and mitochondrial ROS generation. These data demonstrated that UgU activated the NLPR3 inflammasome activation through Ca2+ mobilization and the production of mitochondrial ROS. We also demonstrated that UgU-dependent NLRP3 inflammasome activation enhanced the bactericidal function of human monocytes. The ability of UgU to stimulate human neutrophils and monocytes, both of which are professional phagocytes, and its capacity to activate the NLRP3 inflammasome, which is a promising molecular target for developing anti-infective medicine, indicate that UgU treatment should be considered as a possible novel therapy for treating infectious diseases. Keywords: Inflammasome, Innate immunity, Monocyte, NLRP3, Ugonin

    Ugonin L inhibits osteoclast formation and promotes osteoclast apoptosis by inhibiting the MAPK and NF-κB pathways

    No full text
    Bone loss is a major issue for patients with osteoporosis, arthritis, periodontitis, and bone metastasis; however, anti-resorption drugs used to treat bone loss have been linked to a variety of adverse effects. Helminthostachys zeylanica (L.) Hook, belonging to the family Ophioglossaceae, is commonly used in traditional Chinese medicine to treat inflammation and liver problems. In the current study, ugonin L extracted from H. zeylanica was shown to reduce the receptor activator of nuclear factor kappa beta ligand (RANKL)-induced osteoclastogenesis in RAW264.7 cells in a concentration-dependent manner. Ugonin L treatment also inhibited the mRNA expression of osteoclast markers. Ugonin L was also shown to promote cell apoptosis in mature osteoclasts and suppress RANKL-induced ERK, p38, JNK, and NF-κB activation. Taken together, ugonin L appears to be a promising candidate for the development of novel anti-resorption therapies

    Novel histone deacetylase inhibitor AR-42 exhibits antitumor activity in pancreatic cancer cells by affecting multiple biochemical pathways

    No full text
    <div><p>Objective</p><p>Pancreatic cancer is one of the most lethal types of cancer with a 5-year survival rate of ~5%. Histone deacetylases (HDACs) participate in many cellular processes, including carcinogenesis, and pharmacological inhibition of HDACs has emerged as a potential therapeutic strategy. In this study, we explored antitumor activity of the novel HDAC inhibitor AR-42 in pancreatic cancer.</p><p>Methods</p><p>Human pancreatic cancer cell lines BxPC-3 and PANC-1 were used in this study. Real-time PCR, RT-PCR, and western blotting were employed to investigate expression of specific genes and proteins, respectively. Translocation of apoptosis-inducing factor was investigated by immunofluorescence and subcellular fractionation. The number of apoptotic cells, cell cycle stages, and reactive oxygen species (ROS) generation levels were determined by flow cytometry. Cell invasiveness was examined by the Matrigel invasion assay. Efficacy of AR-42 <i>in vivo</i> was evaluated by utilizing BxPC-3 xenograft mouse model.</p><p>Results</p><p>AR-42 inhibited pancreatic cancer cell proliferation by causing G2/M cell cycle arrest via regulating expression levels of genes and proteins involved in cell cycle. AR-42 also induced ROS generation and DNA damage, triggering apoptosis of pancreatic cancer cells via both caspase-3-dependent and caspase-3-independent pathways. In addition, AR-42 increased expression levels of negative regulators of p53 (miR-125b, miR-30d, and miR33), which could contribute to lower expression level of mutant p53 in pancreatic cancer cells. Cell invasion assay showed that AR-42 reduced cancer cell aggressiveness and significantly diminished BxPC-3 xenograft tumor growth <i>in vivo</i>.</p><p>Conclusion</p><p>AR-42, a novel HDAC inhibitor, inhibited pancreatic cancer cells by regulating p53 expression, inducing cell cycle arrest, particularly at the G2/M stage, and activating multiple apoptosis pathways. Additionally, AR-42 inhibited cell invasiveness and potently suppressed pancreatic cancer tumors <i>in vivo</i>. We conclude that by virtue of its multiple mechanisms of action, AR-42 possesses a considerable potential as an antitumor agent in pancreatic cancer.</p></div

    Three New Clerodane Diterpenes from Polyalthia longifolia var. pendula

    No full text
    Three new clerodane diterpenes, (4→2)-abeo-cleroda-2,13E-dien-2,14-dioic acid (1), (4→2)-abeo-2,13-diformyl-cleroda-2,13E-dien-14-oic acid (2), and 16(R&amp;S)- methoxycleroda-4(18),13-dien-15,16-olide (3), were isolated from the unripe fruit of Polyalthia longifolia var. pendula (Annonaceae) together with five known compounds (4–8). The structures of all isolates were determined by spectroscopic analysis. The anti-inflammatory activity of the isolates was evaluated by testing their inhibitory effect on NO production in LPS-stimulated RAW 264.7 macrophages. Among the isolated compounds, 16-hydroxycleroda-3,13-dien-15,16-olide (6) and 16-oxocleroda-3,13-dien-15-oic acid (7) showed promising NO inhibitory activity at 10 µg/mL, with 81.1% and 86.3%, inhibition, respectively
    corecore