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Abstract. The aim of the present study was to discover the 
signaling pathways associated with 2-(3-hydroxy-5-methoxy
phenyl)-6,7-methylenedioxyquinolin-4-one (YYK1)-induced 
apoptosis in HL-60 human leukemia cells. YYK1 induced 
cytotoxic effects, cell morphological changes, decreased 
the cell number and increased reactive oxygen species 
(ROS) production and loss of mitochondrial membrane 
potential (ΔΨm) in HL-60 cells. YYK1-induced apoptosis 
was confirmed by the terminal deoxynucleotidyl transferase 
dUTP nick end labeling (TUNEL) staining. Results from 
colorimetric assays and western blot analysis indicated that 
activities of caspase-7/-3, caspase-8 and caspase-9 were 
increased in YYK1-treated HL-60 cells. Western blot analysis 
showed that the protein levels of extrinsic apoptotic proteins 
(Fas/CD95, FasL and FADD), intrinsic related proteins  
(cytochrome c, Apaf-1, AIF and Endo G), the ratio of Bax/
Bcl-2 and phosphorylated p38 MAPK were increased in HL-60 
cells after YYK1 treatment. Cell apoptosis was significantly 
reduced after pre-treatment with N-acetylcysteine (NAC; a 
ROS scavenger) or diphenyleneiodonium chloride (DPI; a 
NADPH oxidase inhibitor). Blockage of p38 MAPK signaling 

by SB202190 abolished YYK1-induced Fas/CD95 upregula-
tion and apoptosis in HL-60 cells. We conclude that YYK1 
induces both of extrinsic and intrinsic apoptotic pathways via 
ROS-mediated activation of p38 MAPK signaling in HL-60 
human leukemia cells in vitro.

Introduction

Apoptosis is characterized by morphological changes, cell 
shrinkage and chromatin condensation (1-3). Two signal 
pathways are involved in apoptosis. The intrinsic pathway 
involves disrupting the mitochondrial membrane and then 
releasing cytochrome c, apoptotic protease activating factor-1 
(Apaf-1), pro-caspase-9, apoptosis-inducing factor (AIF) and 
endonuclease G (Endo G) into the cytosol. The extrinsic 
pathway through death receptors and ligand interaction such 
as FasL/Fas and then activate caspase-8 (4,5). Both of intrinsic 
and extrinsic pathways induced the activation of caspase-7 and 
caspase-3 (6). A recent study has also demonstrated that the 
mitogen-activated protein kinases (MAPKs) signaling is able 
to regulate apoptosis-associated pathways in tumor cells (7,8).

The MAPKs signaling modulate physiological functions 
and include cell proliferation, differentiation, development and 
apoptosis (9,10). There are three major subfamilies of MAPKs 
including extracellular signal-regulated kinase (ERK), c-Jun 
N-terminal kinase (JNK) and p38 proteins (11). Stimulations 
such as growth factors, hormones, or cytokines activate MAP 
kinase kinases (MKKs). MKKs phosphorylate tyrosine/
threonine residues of MAPKs then result in dimerization 
and subsequent activation of MAPKs (12). The ERK cascade 
is most frequently associated with cell survival activity but 
the p38 and JNK proteins appear to be pro-apoptotic effects 
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(11,13). p38 MAPK is activated by a variety of cellular stresses 
and acts at early step prior to dysfunction of mitochondria and 
caspase activation in cell apoptosis (14). The recent studies 
have demonstrated that the p38 MAPK kinase cascade is 
necessary during cell apoptosis by cellular stress (14,15).

In the present study, we designed and synthesized a novel 
anti-leukemia compound, 2-(3-hydroxy-5-methoxyphenyl)-
6,7-methylenedioxyquinolin-4-one (YYK1), it is a most 
potential candidate for anti-leukemia activities as shown in 
Fig. 1. However, neither the cytotoxic effects of YYK1 on 
HL-60 leukemia cells nor the molecular mechanisms under-
lying its anti-leukemia activity have been well investigated. 
In this study, the proliferation curve showed that YYK1 had 
time- and concentration-dependent effects on the cytotoxicity 
of HL-60 cells. YYK1 caused apoptotic cell death, which is 
preceded by the generation of ROS, sustained activation of p38 
MAPK. Our results strongly suggest a necessary role for the 
p38 MAPK pathway during cell death by apoptosis in HL-60 
cells induced by YYK1.

Materials and methods

Chemicals and regents. YYK1, 2-(3-hydroxy-5-methoxy-
phenyl)-6,7-methylenedioxyquinolin-4-one, was synthesized 
in our lab (Graduate Institute of Pharmaceutical Chemistry, 
College of Pharmacy, China Medical University). YYK1 was 
dissolved in sterile DMSO and aliquoted and stored at -20˚C. 
Propidium iodide (PI), proteinase K, RNase A, Triton X-100, 
chemical inhibitors for p38 (SB202109), diphenyleneiodonium 
chloride (DPI; NADPH oxidase inhibitor) and scavengers of 
ROS (N-acetylcysteine) were purchased from Sigma-Aldrich 
Corp. (St. Louis, MO, USA). Sources of antibodies used in 
this study were: polyclonal antibodies specific for caspase-8, 
caspase-9, caspase-3 and caspase-7 were obtained from Cell 
Signaling Technology Inc. (Danvers, MA, USA). Monoclonal 
antibodies specific for AIF was purchased from Abcam Inc. 
(Cambridge, MA, USA). Monoclonal antibodies specific for 
Fas/CD95, FasL, FADD, cytochrome c, Apaf-1, Endo G, Bax, 
Bcl-2, β-actin and all peroxidase (HRP)-conjugated secondary 
antibodies were obtained from Santa Cruz Biotechnology, Inc. 
(Santa Cruz, CA, USA). Enhanced chemiluminescence (ECL) 
was purchased from Millipore (Bedford, MA, USA).

Cell culture. The human promyelocytic leukemia cell line 
(HL-60) was purchased from the Bioresource Collection and 
Research Centre (BCRC) of the Food Industry Research and 
Development Institute (Hsinchu, Taiwan). Cells were cultured 

in RPMI-1640 medium (Gibco/Life Technologies, Carlsbad, 
CA, USA) and supplemented with 10% heat-inactivated fetal 
calf serum (FCS) (HyClone, Logan, UT, USA), 100 Units/ml 
penicillin, 100 µg/ml streptomycin (Gibco/Life Technologies) 
and 2 mM L-glutamine (Gibco/Life Technologies) at 37˚C in a 
5% CO2 humidified incubator.

Detection of cell number. HL-60 cells at a density of 2.5x105/
well were seeded in 24-well plates and then exposed to 0, 125, 
250, 500 and 1000 nM of YYK1 or 0.1% DMSO (as a vehicle 
control) for 24 and 48 h. Cells were harvested and determined 
cell number using trypan blue stain by Countess Automated 
Cell Counter (Invitrogen/Life Technologies) (16,17).

Determinations of cell viability. HL-60 cells (2.5x105/well) in 
24-well plates were treated with 125, 250, 500 and 1000 nM of 
YYK1 or 0.1% DMSO (as a vehicle control) for 48 h. Cells were 
harvested, washed and re-suspended in phosphate-buffered 
saline (PBS) buffer containing 4 µg/ml of PI. Cell viability 
was analyzed using a PI exclusion method and flow cytometry 
(FACSCalibur, Becton-Dickinson, NJ, USA) equipped with 
a laser at 488 nm wavelength (18,19). The percentage of cell 
viability was calculated as a ratio of the number of YYK1-
treated cells to that of 0.1% DMSO as a vehicle-control group. 
Cell viability was performed in triplicate from three indepen-
dent experiments.

Cell morphological determination. HL-60 cells at a density 
2.5x105/well were seeded in 24-well plates and then exposed 
to 0, 125, 250, 500 and 1000 nM of YYK1 or 0.1% DMSO (as 
a vehicle control) for 48 h. Cell morphology was examined and 
photographed under a phase contrast microscope as previously 
described (19,20).

Analysis for sub-G1 phase distribution. HL-60 cells (2.5x105/
well) were placed in 24-well plates and incubated with 125, 
250, 500 and 1000 nM of YYK1 or vehicle control (0.1% 
DMSO) for 48  h. For determination of cell apoptosis at 
sub-G1 phase, cells were fixed gently by putting 70% ethanol 
at -20˚C overnight, and then re-suspended in PBS containing 
40 µg/ml of PI, 0.1 mg/ml RNase A and 0.1% Triton X-100 in 
dark room for 30 min. Cell cycle distribution and apoptotic 
nuclei were determined by flow cytometry as previously 
described (21,22).

TUNEL assay. HL-60 cells (2.5x105 cells/well) in 24-well 
plates were exposed to 125, 250, 500 and 1000  nM of 
YYK1 or 0.1% DMSO (as a vehicle control) for 48 h. For the 
specific inhibitor assay, cells were pretreated with 2 mM of 
NAC, 10 µM of DPI and 10 µM of SB202190, respectively 
for 1 h, followed by treatment with or without 500 nM of 
YYK1. After incubation for 48 h, in situ apoptosis detection 
of DNA fragmentation was determined by using the terminal 
deoxyribonucleotide transferase-mediated dUTP nick end-
labeling (TUNEL) assay kit (In Situ Cell Death Detection 
kit, Fluorescein, Roche Diagnostics, Hillsdale, MI, USA). 
Following TUNEL staining, samples were washed once and 
re-suspended in 0.5 ml of PBS containing 10 µg/ml of PI. 
TUNEL positive cells were analyzed by flow cytometry as 
previously described (1,23). The median fluorescence intensity 

Figure 1. The structure of 2-(3-hydroxy-5-methoxyphenyl)-6,7-methylene-
dioxyquinolin-4-one (YYK1).
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was quantified by BD CellQuest Pro software. TUNEL assays 
were performed in triplicate in three independent experiments.

Assays for caspase activities. HL-60 cells at a density of 1x107/
dish were seeded in 10-cm dishes and then exposed to 125, 
250, 500 and 1000 nM of YYK1 or 0.1% DMSO (as a vehicle 
control) for 48 h. Cells were lysed in lysis buffer [50 mM 
Tris-HCl (pH 7.4), 1 mM EDTA, 10 mM EGTA, 10 mM digi-
tonin and 2 mM DTT]. About 50 µg of cytosol proteins were 
incubated with caspase-9, caspase-8, caspase‑7/-3 specific 
substrates (R&D Systems) for 1 h at 37˚C. The caspase activity 
was determined by measuring OD405 as previously described 
(18,24).

Determination of reactive oxygen species (ROS) and 
mitochondrial membrane potential (ΔΨm). HL-60 cells 
at a density of 2.5x105/well were plated in 24-well plates 
and then exposed to 125, 250, 500 and 1000 nM of YYK1 
or 0.1% DMSO (as a vehicle control) for 6  h. Cells were 
harvested then washed twice by PBS, and then re-suspended 
in 2,7-Dichlorodihydrofluorescein diacetate (DCFH-DA; 
10 µM) for ROS determination and in DiOC6 (500 nM) for 
ΔΨm. Cells were incubated for 30 min at 37˚C in the dark 
room and analyzed immediately by flow cytometry as previ-
ously described (19,25).

Western blot analysis. HL-60 cells (1x107 cells/dish) in 10-cm 
dishes were treated with or without 125, 250, 500 and 1000 nM 
of YYK1 or 0.1% DMSO (as a vehicle control) for 48 h. Total 
protein and cytosolic fraction were prepared and lysated in the 
into the PRO-PREP™ Protein Extraction solution (iNtRON 
Biotechnology, Gyeonggi-do, Korea). Equal amounts of 30 µg 
protein were separated by 10-12% sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE) and electro-
transferred to a nitrocellulose membrane by using iBot™Dry 
Blotting System (Invitrogen/Life Technoligies). Blots were 
blocked in PBST buffer (0.05% Triton X-100 in PBS) 
containing 5% non-fat milk for 1 h, and then incubated with 
specific primary antibodies at 4˚C overnight. The membrane 
was washed with PBST buffer and incubated with secondary 
antibodies conjugated horseradish peroxidase (HRP). The 
specific protein was detected by using Immobilon Western 
Chemiluminescent HRP substrate (Millipore, Bedford, MA, 
USA) as previously described (18,26,27).

Statistical analysis. Data are presented as the mean ± SEM 
for the indicated number of separate experiment. Statistical 
analyses of data were done by Student's t-test, and *P<0.05, 
***P<0.001 were considered significant.

Results

YYK1 inhibits cell number and viability in HL-60 cells. To 
assess the effect of YYK1 on cell number, HL-60 cells were 
exposed to 0, 125, 250, 500 and 1000 nM of YYK1 for 24 
and 48  h and determined cell number using trypan blue 
stain by Countess Automated Cell Counter (Invitrogen/Life 
Technologies). As shown in Fig. 2A, YYK1 inhibited cell 
number of HL-60 cells in a concentration- and time-dependent 
manner. To investigate the effect of YYK1 on cell viability, 

HL-60 cells were treated with 125, 250, 500 and 1000 nM 
of YYK1 for 48 h and measured cell viability using a PI 
exclusion assay and flow cytometric analysis. Fig. 2B shows 
that YYK1 concentration-dependently reduced cell viability 
of HL-60 cells. The half maximal inhibitory concentration 
(IC50) for 48 h of treatment of YYK1 in HL-60 cells was 
521.39±3.25 nM.

YYK1 induces cell apoptosis in HL-60 cells. To verify YYK1-
induced cytotoxicity, we examined the cell morphological 
changes in HL-60 cell after exposure to 125, 250, 500 and 
1000 nM of YYK1 for 48 h. Results in Fig. 3A display that 
YYK-1 induced characteristic features of cell shrinking and 
rounding as well as formation of apoptotic bodies. Further 
studies investigated the possible mechanisms focusing on 
cell cycle arrest or cell death by inhibitory effects in YYK1-
treated HL-60 cells. Our results demonstrated that YYK1 
induced sub-G1 phase (cell death) at 48-h treatments and 
these effects occurred in a concentration-dependent manner. 
To verify the cell apoptosis in YYK1-treated HL-60 cells, 
we assessed the DNA fragmentation by TUNEL staining. 
As shown in Fig. 3C, YYK1 induced DNA fragmentation 
(TUNEL positive cells) in HL-60 cells, which was increased 
in a concentration-dependent manner. Our results suggest 
that YYK-1 induced DNA fragmentation for cell apoptosis 
in HL-60 cells.

YYK1 stimulates the activities of caspase-3/-7, caspase-8 
and caspase-9 in HL-60 cells. To examine whether caspases 

Figure 2. Effects of YYK1 on cell number and viability in the human leu-
kemia cell line (HL-60). HL-60 cells were treated with 0, 125, 250, 500 and 
1000 nM of YYK1 for indicated intervals of time. (A) After 24 and 48 h 
exposures, cell number was investigated utilizing Countess Automated Cell 
Counter (Invitrogen/Life Technologies). (B) After 48-h treatment, cell via-
bility was determined by a PI exclusion method and flow cytometry. The data 
are shown as the mean ± SEM of three independent experiments. *P<0.05 vs. 
untreated control.
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activities are involved in YYK1-induced apoptosis in HL-60 
cells, cells were exposed to 125, 250, 500 and 1000 nM of 
YYK1 for 48 h and then the activities of caspase-3/-7, -8 and -9 
were determined by colorimetric assays. Results demonstrated 
that YYK1 promoted the activation of caspase-3/-7 (Fig. 4A), 
caspase-8 (Fig. 4B) and caspase-9 (Fig. 4C) after 48 h treat-
ment. Based on these observations, the YYK1-induced cell 
death may be mediated through extrinsic and intrinsic apop-
totic pathways in HL-60 cells.

YYK1 induces reactive oxygen species (ROS) production 
and loss of ΔΨm in HL-60 cells. We further investigated the 
upstream signals of YYK1-induced apoptosis in HL-60 cells. 
Cells were exposed to 125, 250, 500 and 1000 nM of YYK1 
for 6 h, and then measurement in the level of ROS production 
by flow cytometric assay. YYK1-promoted the ROS produc-
tion is a concentration-dependent effect as seen in Fig. 5A. 
We also examined the effects of YYK1 on the ΔΨm. Our 
data indicated that YYK1 decreased ΔΨm (Fig. 5B) after 6 h 

Figure 3. YYK1 affects morphological changes and induced apoptosis in HL-60 cells. (A) Cells were exposed to various concentrations (0, 250, 500 and 
1000 nM) of YYK1 for 48 h and then photographed under a phase-contrast microscope at x200 magnification. For detecting the apoptotic death, cells 
were treated with 0, 125, 250, 500 and 1000 of YYK1 for 48 h, and stained by PI and TUNEL assay (In Situ Cell Death Detection Kit, Fluorescein, Roche 
Diagnostics), respectively, by flow cytometry as described in Materials and methods to determine (B) sub-G1 population (apoptosis) and (C) DNA fragmenta-
tion. The data shown are the mean ± SEM of three independent experiments. *P<0.05 vs. untreated control.

Figure 4. YYK1 promotes the caspase-3/7, caspase-8 and caspase-9 activities in HL-60 cells. Cells were treated with 0, 125, 250, 500 and 1000 nM of YYK1 
for 48 h and the whole-cell lysate was subjected to (A) caspase-3/7, (B) caspase-8 and (C) caspase-9 activities as described in Materials and methods. The data 
shown are the mean ± SEM of three independent experiments. *P<0.05 vs. the vehicle-control sample.
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treatment in HL-60 cells. Importantly, we found decreased 
percentage of apoptotic cells (TUNEL positive cells) when 

compared with untreated cells, when cells were pretreated 
with N-acetylcysteine (NAC, ROS scavenger) or diphenylenei-

Figure 5. YYK1 enhanced the ROS production and loss of ΔΨm in HL-60 cells. Cells were treated with 0, 125, 250, 500 and 1000 nM of YYK1 for 6 h. The 
levels of (A) ROS production and (B) ΔΨm were stained with 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) and DiOC6, respectively. The stained cells 
were determined by flow cytometry as described in Materials and methods. (C) Cells were pretreated with or without 2 mM of NAC, 10 µM of DPI, respectively 
for 1 h and then were treated with 500 nM of YYK1 for 48 h. The apoptotic cells were determined by TUNEL assay and analyzed by flow cytometry as 
described in Materials and methods. The data shown are the mean ± SEM of three independent experiments. *P<0.05 vs. untreated control. #P<0.05 vs. YYK1 
treatment for 48 h. 

Figure 6. YYK1 altered the apoptosis-associated protein levels of intrinsic and extrinsic signaling in HL-60 cells. Cells were exposed to 0, 125, 250, 500 
and 1000 nM of YYK1 for 48 h, and then harvested total protein lysed for the detection the protein levels by western blot analysis. (A) The protein levels of 
caspase-8, caspase-9, caspase-7 and caspase-3; (B) Fas/CD95, FasL and FADD; (C) cytochrome c, Apaf-1, AIF, Endo G, Bax and Bcl-2. β-actin is the internal 
control. The data present are from three individual experiments with similar results.
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odonium chloride (DPI; NADPH oxidase inhibitor) and then 
treated with YYK1 (Fig. 5C). Thus, we suggest that YYK1-
induced apoptosis is involved in ROS production and loss of 
ΔΨm in HL-60 cells.

YYK1 affects apoptosis-associated protein levels (intrinsic 
and extrinsic signaling) in HL-60 cells. We investigated the 
apoptosis-associated protein levels for apoptotic death by 
western blotting. As illustrated in Fig. 6A, YYK1 caused an 

Figure 7. YYK1 affects MAPK signaling-associated protein levels and Fas/CD95 signaling in HL-60 cells. Cells were pre-incubated with or without 10 µM 
of SB202190 (a selective inhibitor of p38 MAPK) and then exposed to 500 nM of YYK1 for 0, 2, 4 and 6 h. At the end of treatment, cell lysate was collected 
to subject to the protein level by western blot analysis. (A) The protein levels of p-ERK, ERK, p-JNK, JNK, p-p38 and p38. The anti-β-actin was used as a 
loading control. Similar results were obtained in three independent experiments. (B) The protein levels of Fas/CD95 were examined by western blot analysis 
and (C) TUNEL assay after pre-treating with SB202190 in YKK1-treated HL-60 cells for 48 h. The data shown are the mean ± SEM of three independent 
experiments. *P<0.05 vs. YYK1 treatment for 48 h.

Figure 8. The proposed signaling network shows the YYK1 provokes cell apoptosis through stimulating ROS generations and upregulation of p38 signaling 
pathway in HL-60 human leukemia cells.
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increase in the protein level of cleavage-caspase-8, cleavage-
caspase-9, cleavage-caspase-7 and cleavage-caspase-3 in 
HL-60 cells. Results shown in Fig. 6B indicate that YYK1 
increased the death receptor pathway-associated protein 
levels, including Fas/CD95, FasL, FADD. Furthermore, 
mitochondrial pathway-related protein levels (cytochrome c, 
Apaf-1, ALF, Endo G and Bax) were increased but the level of 
Bcl-2 was decreased in YYK1-treated HL-60 cells (Fig. 6C). 
Our results indicated that YYK1-induced apoptosis may affect  
intrinsic and extrinsic signaling-associated proteins in HL-60 
cells.

YYK1 stimulates the activity of p38 MAPK and upregulated 
the expression of Fas/CD95 in HL-60 cells. To examine the 
involvement of MAPKs pathway in YYK1-regulated apop-
tosis in HL-60 cells, we investigated the phosphorylated 
MAPK  (phospho-ERK, phospho-JNK and phospho-p38) 
protein levels by western blot analysis. YYK1 promoted 
an increase in protein levels of phospho-p38 in HL-60 
cells as shown in Fig. 7A. It is reported that Fas/CD95 is 
a major regulator of p38 MAPK signaling (28,29), we next 
determined the protein levels of Fas/CD95 by western blot 
analysis in YYK1-treated HL-60 cells after pretreatment 
with p38 MAPK inhibitor (SB202190). When cells were 
pretreated with SB20219 and then treated with YYK1, 
our results showed that the protein level of Fas/CD95 was 
decreased (Fig. 7B), and the percentage of apoptotic cells 
abolished (TUNEL positive cells) when compared untreated 
cells (Fig. 7C). Therefore, we found that p38 MAPK contrib-
utes to the YYK1-induced Fas/CD95 protein expression and 
apoptotic death in HL-60 cell apoptosis.

Discussion

In our early studies, we demonstrated that the 6,7-methyl-
enedioxyquinolin-4-one derivative CHM-1 is a potential 
compound for anticancer activities (30-35). CHM-1 signifi-
cantly inhibited tubulin polymerization and showed cytotoxic 
effect on many human tumor cell lines (SK-Hep-1, HA22T, 
Hep3B, HepG2, U2-OS cells and CT26 cells) in  vitro 
(30,31,33-36) and its phosphate (CHM-1-P) inhibited CT26 
tumor growth in vivo (32,33). Induction of apoptosis through 
p53/DR5 upregulation by CHM-1 has been demonstrated in 
human umbilical vein endothelial cells (HUVECs) (37). In 
recent years, we have designed and synthesized a new series 
of 6,7-methylenedioxyquinolin-4-one derivatives as new 
anti-leukemia agents and YYK1 (Fig. 1) is the most poten-
tial compound against HL-60 leukemia cells. However, the 
cytotoxic effects of YYK1 on HL-60 leukemia cells and the 
anti-leukemia mechanisms are not fully clarified. We first 
demonstrated that YYK1 induced cytotoxic effects through 
induction of apoptosis in HL-60 cells. YYK1 could be used 
as a novel therapeutic agent for the treatment of leukemia in 
the future.

Our results showed the increased sub-G1 population by 
DNA content analysis may involve total cell death, including 
apoptosis and necrosis (Fig. 3B). To determine if the sub-G1 
population was due to apoptotic cell death after exposure to 
YYK1, a quantitative assessment of apoptosis was detected 
by TUNEL staining analysis. YYK1 treatment caused an 

increase in TUNEL positive cells (Fig. 3C), indicating the 
cytotoxic activity of YYK1 was apoptotic and not necrotic 
death. YYK1 induced the activation of caspase-9, caspase-8, 
caspase-7/-3 after 48-h treatment (Fig. 4), and western blot 
analysis was also used to confirm the significant increases in 
the protein levels of cleaved caspase-3, cleaved caspase-8, and 
cleaved caspase-9 after YYK1 treatment (Fig. 6A). Our results 
suggested that YYK1 may induce intrinsic and extrinsic 
apoptotic pathways. Our previous reports demonstrate that the 
6,7-methylenedioxyquinolin-4-one series compound CHM-1, 
induced apoptosis via a ROS-dependent mitochondrial death 
pathway in human osteogenic sarcoma U-2 OS cells (36). 
YYK1 promoted the ROS production in HL-60 cells (Fig. 5A). 
Moreover, HL-60 cells were pretreated with N-acetylcysteine 
(NAC, a ROS scavenger) or diphenyleneiodonium chloride 
(DPI; NADPH oxidase inhibitor), respectively, which led 
to decrease in the apoptotic cells in comparison to the only 
YYK1-treated cells (Fig. 5C). Our results proposed that ROS 
production may be involved in YYK1-induced apoptotic cell 
death in HL-60 cells. We demonstrated that an increase of 
ROS production after YYK1 treatment for 6 h (Fig. 7), and 
YYK1 then promoted the Fas/CD95, FasL, FADD (Fig. 6B) 
and releases of cytochrome c, Apaf-1 and AIF protein levels 
from mitochondria into the cytosol (Fig. 6C) in YYK1-treated 
HL-60 cells. Based on the evidence in Fig. 6, we suggest that 
YYK1-stimulated cell death is involved in the intrinsic and 
extrinsic apoptotic pathway.

Following YYK1 treatment, the production of phosphory-
lated p38 (p-p38) was shown in YKK1-treated HL-60 cells 
but the protein levels of p-ERK and p-JNK were no significant 
compared with the control cells. In contrast, YYK1 induced 
the protein levels of p-p38 at 2, 4 and 6 h (Fig. 7A), suggesting 
that p38 MAPK activation is critical during YYK1-induced 
cell apoptosis. p38 MAPK is a stress-activated MAP kinase 
that is preferentially activated by cell stress-inducing 
signals, including oxidative stress and cytotoxic chemical 
agent (38-40). In the present study, YYK1-induced phos-
phorylation of p38 MAPK was abrogated by pretreatment 
with NAC, suggesting that ROS were upstream events for 
p38 MAPK activation (data not shown). Previous studies 
suggest that p38 MAPK is involved in upregulating Fas/
CD95 expression (41,42). Our study focused on confirming 
this hypothesis using SB202190 (p38 MAPK inhibitor) in 
YKK1-treated HL-60 cells. As shown in Fig. 7B, SB202190 
abrogated YYK1-induced expression of Fas/CD95 in HL-60 
cells. Moreover, TUNEL analysis revealed that 43.96% of 
the HL-60 cells were apoptotic cells after 48-h treatment 
with YYK1. However, only 14.29% was apoptotic cells in 
the YYK1 treatment (Fig. 7C) when the HL-60 cells were 
pre-treated with SB202190 (10 µM) of for 1 h. In this study, 
we demonstrated an important role for p38 MAPK and its 
link between ROS generation and Fas/CD95-mediated 
apoptosis in YYK1-treated HL-60 cells. Taken together, 
the involvement of p38 MAPK activation in upregulation 
of Fas/CD95 protein expression and activations of intrinsic 
and extrinsic apoptotic pathways are proposed in YYK1-
treated cells (Fig.  8). In this regard, understanding the 
signal pathways responsible for YYK1-induced apoptosis 
might lead to discovering more effective strategies in 
improving leukemia treatment.
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