10 research outputs found

    Establishment of the Underlying Rationale and Description of a Cheap Nanofiltration-Based Method for Supplementing Desalinated Water with Magnesium Ions

    No full text
    The importance of supplying drinking water with a balanced mineral composition, including a minimal concentration of Mg(II) ions, has been recently acknowledged by many publications, as well as in official WHO guidelines. The issue is relevant to naturally occurring soft waters and lately to the rapidly increasing volume of supplied desalinated water. This paper presents an enhancement of a recently developed nanofiltration-based method for the selective separation of soluble Mg(II) species from seawater. The generated rich-Mg(II) brine is demonstrated to be suitable for supplementing soft waters with magnesium ions. The brine, generated using a commercial membrane (DS-5 DL, Osmonics) at various operational conditions is characterized by high Mg(II) concentrations (~8.5 g/L) and low Cl:Mg and Na:Mg molar concentration ratios (1.6 and 0.6, respectively, at 28-bar operation). A food-grade antiscalant is dosed to the feed seawater to prevent scaling; however, since the Mg(II) concentration in the brine is high, for attaining 10 mg Mg/L of desalinated water, the dilution ratio with the desalinated water is ~1:850, resulting in maximal additional concentrations of 0.024 antiscalant, 34.9 Cl(−I), 12.9 Na(I), 0.05 Sr(II) and 0.003 B (all concentrations in mg/L). The overall cost of 1 kg of Mg(II) separated by the presented process amounts to between 0.05and0.05 and 0.07, i.e., much cheaper than the estimated costs of alternative processes for Mg(II) addition to desalinated water

    Implementation, Design and Cost Assessment of a Membrane-Based Process for Selectively Enriching Desalinated Water with Divalent Seawater Ions

    No full text
    The paper describes results from operating a new 3-step membrane-based process targeted at separating Mg2+ from seawater in an inexpensive way, with the purpose of using it to enrich desalinated water with magnesium, with as little as possible Cl− and Na+ addition. To this end, seawater undergoes a series of processes aimed at increasing the Mg2+ concentration from ~1350 to ~4000 mg/L through nanofiltration while the monovalent ion concentrations are reduced by a nanofiltration-diananofiltration sequence, in which the diluent is RO produced water from a desalination plant. A dense ultrafiltration (UF) step precedes the nanofiltration-diananofiltration (NF-DiaNF) cycles. In this step sulfate in seawater is rejected better than divalent cations hence the retentate of this step has a ratio of total hardness to sulfate (([Ca2+] + [Mg2+])/[SO42−] → 1) which enables attaining an almost complete washout of monovalent ions in the DiaNF step. The paper is concluded with presentation of general design of the process steps and a cost assessment, which shows the process to be both flexible in the quality of the rich Mg solution generated, and cost competitive, relative to other alternatives

    Establishment of the Underlying Rationale and Description of a Cheap Nanofiltration-Based Method for Supplementing Desalinated Water with Magnesium Ions

    No full text
    The importance of supplying drinking water with a balanced mineral composition, including a minimal concentration of Mg(II) ions, has been recently acknowledged by many publications, as well as in official WHO guidelines. The issue is relevant to naturally occurring soft waters and lately to the rapidly increasing volume of supplied desalinated water. This paper presents an enhancement of a recently developed nanofiltration-based method for the selective separation of soluble Mg(II) species from seawater. The generated rich-Mg(II) brine is demonstrated to be suitable for supplementing soft waters with magnesium ions. The brine, generated using a commercial membrane (DS-5 DL, Osmonics) at various operational conditions is characterized by high Mg(II) concentrations (~8.5 g/L) and low Cl:Mg and Na:Mg molar concentration ratios (1.6 and 0.6, respectively, at 28-bar operation). A food-grade antiscalant is dosed to the feed seawater to prevent scaling; however, since the Mg(II) concentration in the brine is high, for attaining 10 mg Mg/L of desalinated water, the dilution ratio with the desalinated water is ~1:850, resulting in maximal additional concentrations of 0.024 antiscalant, 34.9 Cl(−I), 12.9 Na(I), 0.05 Sr(II) and 0.003 B (all concentrations in mg/L). The overall cost of 1 kg of Mg(II) separated by the presented process amounts to between 0.05and0.05 and 0.07, i.e., much cheaper than the estimated costs of alternative processes for Mg(II) addition to desalinated water

    Removal of Nitrate from Drinking Water by Ion-Exchange Followed by nZVI-Based Reduction and Electrooxidation of the Ammonia Product to N2(g)

    No full text
    Ion-exchange (IX) is common for separating NO3− from drinking water. From both cost and environmental perspectives, the IX regeneration brine must be recycled, via nitrate reduction to N2(g). Nano zero-valent iron (nZVI) reduces nitrate efficiently to ammonia, under brine conditions. However, to be sustainable, the formed ammonia should be oxidized. Accordingly, a new process was developed, comprising IX separation, nZVI-based nitrate removal from the IX regeneration brine, followed by indirect ammonia electro-oxidation. The aim was to convert nitrate to N2(g) while allowing repeated usage of the NaCl brine for multiple IX cycles. All process steps were experimentally examined and shown to be feasible: nitrate was efficiently separated using IX, which was subsequently regenerated with the treated/recovered NaCl brine. The nitrate released to the brine reacted with nZVI, generating ammonia and Fe(II). Fresh nZVI particles were reproduced from the resulting brine, which contained Fe(II), Na+, Cl− and ammonia. The ammonia in the nZVI production procedure filtrate was indirectly electro-oxidized to N2(g) at the inherent high Cl− concentration, which prepared the brine for the next IX regeneration cycle. The dominant reaction between nZVI and NO3− was described best (Wilcoxon test) by 4Fe(s) + 10H+ + NO3− → 4Fe2+ + NH4+ + 3H2O, and proceeded at >5 mmol·L−1·min−1 at room temperature and 3 < pH < 5

    Implementation, Design and Cost Assessment of a Membrane-Based Process for Selectively Enriching Desalinated Water with Divalent Seawater Ions

    No full text
    The paper describes results from operating a new 3-step membrane-based process targeted at separating Mg2+ from seawater in an inexpensive way, with the purpose of using it to enrich desalinated water with magnesium, with as little as possible Cl− and Na+ addition. To this end, seawater undergoes a series of processes aimed at increasing the Mg2+ concentration from ~1350 to ~4000 mg/L through nanofiltration while the monovalent ion concentrations are reduced by a nanofiltration-diananofiltration sequence, in which the diluent is RO produced water from a desalination plant. A dense ultrafiltration (UF) step precedes the nanofiltration-diananofiltration (NF-DiaNF) cycles. In this step sulfate in seawater is rejected better than divalent cations hence the retentate of this step has a ratio of total hardness to sulfate (([Ca2+] + [Mg2+])/[SO42−] → 1) which enables attaining an almost complete washout of monovalent ions in the DiaNF step. The paper is concluded with presentation of general design of the process steps and a cost assessment, which shows the process to be both flexible in the quality of the rich Mg solution generated, and cost competitive, relative to other alternatives
    corecore