76 research outputs found

    Research on quantitative inversion of ion adsorption type rare earth ore based on convolutional neural network

    Get PDF
    Rare earth resource is a national strategic resource, which plays an essential role in the field of high technology research and development. In this paper, we aim to use remote sensing quantitative inversion prospecting technology, use surface-to-surface mode, and model inversion and evaluation through convolutional neural network model to achieve a new research method for large-scale, low-cost, rapid and efficient exploration of ion-adsorbed rare earth ore. The results show that the RE2O3 content of samples has significant negative correlation with the second, third and fourth band of GF-2 image, but has no significant correlation with the first band of GF-2 image; the convolution neural network model can be used to reconstruct the RE2O3 content. The content distribution map of RE2O3 obtained by inversion is similar to that of geochemical map, which indicates that the convolution neural network model can be used to invert the RE2O3 content in the sampling area. The quantitative inversion results show that the content distribution characteristics of ion adsorption rare earth ore in the study area are basically consistent with the actual situation; there are two main high anomaly areas in the study area. The high anomaly area I is a known mining area, and the high anomaly area II can be a prospective area of ion adsorption type rare earth deposit. It shows that the remote sensing quantitative inversion prospecting method of ion adsorption type rare earth deposit based on Convolutional Neural Networks (CNN) model is feasible

    Fruit quality assessment based on mineral elements and juice properties in nine citrus cultivars

    Get PDF
    IntroductionCitrus fruit is considered a superfood due to its multiple nutritional functions and health benefits. Quantitative analysis of the numerous quality characteristics of citrus fruit is required to promote its sustainable production and industrial utilization. However, little information is available on the comprehensive quality assessment of various fruit quality indicators in different citrus cultivars.MethodsA total of nine different fresh citrus fruits containing seeds were collected as the experimental materials. The objectives of this study were: (i) to determine the morphological and juice properties of citrus fruits, (ii) to measure the mineral elements in the peel, pulp, and seeds, and (iii) to evaluate the fruit quality index (FQI) using the integrated quality index (IQI) and the Nemoro quality index (NQI) methods.ResultsThere were significant differences in fruit quality characteristics, including morphological, mineral, and juice quality, among the investigated citrus cultivars. The proportion of pulp biomass was the highest, followed by that of peel and seeds. N and Cu had the highest and lowest concentrations, respectively, among the measured elements across all citrus fruits, and the amounts of N, P, Mg, Cu, and Zn in seeds, K and Al in pulp, and Ca, Fe, and Mn in peel were the highest, dramatically affecting the accumulation of minerals in the whole fruit and their distribution in various fruit parts. Additionally, Ningmeng fruits had the highest vitamin C and titratable acidity (TA) but the lowest total soluble solids (TSS) and total phenolic (TP) contents, resulting in the lowest TSS/TA and pH values. In contrast, Jinju fruits had the highest TSS and TP contents. Based on the mineral element and juice quality parameters, principal component analysis showed that the citrus fruits were well separated into four groups, and the dendrogram also showed four clusters with different distances. The FQI range based on the IQI method (FQIIQI) and NQI method (FQINQI) was 0.382-0.590 and 0.106-0.245, respectively, and a positive relationship between FQIIQI and FQINQI was observed.ConclusionOur results highlight the great differences in mineral and juice characteristics among fruit parts, which mediated fruit quality. The strategy of fruit quality assessment using the FQI can be expanded for targeted utilization in the citrus industry

    Ganoderma lingzhi culture enhance growth performance via improvement of antioxidant activity and gut probiotic proliferation in Sanhuang broilers

    Get PDF
    IntroductionThe experiment was conducted to evaluate the effects of Ganoderma lingzhi culture (GLC) as a fermented feed on growth performance, serum biochemical profile, meat quality, and intestinal morphology and microbiota in Sanhuang broilers. In addition, the association between gut bacteria and metabolites was investigated via untargeted metabolomic analysis.MethodsA total of 192 Sanhuang broilers (112 days old) with an initial body weight of 1.62 ± 0.19 kg were randomly allocated to four treatments, six replicate pens per treatment with 8 broilers per pen. The four treatments contain a control diet (corn-soybean meal basal diet, CON), a positive control diet (basal diet + 75 mg/kg chlortetracycline, PCON), and the experimental diets supplemented with 1.5 and 3% of GLC, respectively. The trial includes phase 1 (day 1–28) and phase 2 (day 29–56).ResultsThe results showed that broilers in PCON and GLC-added treatments showed a lower FCR (P < 0.05) in phase 2 and overall period and a higher ADG (P < 0.05) in phase 2. On day 56, the concentrations of serum SOD (P < 0.05), and HDL (P < 0.05) and cecal SCFA contents (P < 0.05) were increased in broilers fed GLC diets. Broilers fed GLC also showed a higher microbiota diversity and an elevated abundance of SCFA-related bacteria in the caecum. The association between intestinal bacteria and metabolites was investigated via correlation analysis. The differential metabolites in the caecum, such as L-beta-aspartyl-L-aspartic acid and nicotinamide riboside, were identified.ConclusionIn summary, dietary GCL supplementation could increase growth performance to some extent. Moreover, GLC might benefit broilers' health by improving serum HDL content, antioxidant status, SCFAs contents, bacterial diversity, and probiotic proliferation in the caecum

    Does environmental regulation promote the upgrading of industrial structure? Evidence from the Yangtze River economic belt in China

    No full text
    This paper examines the impact of environmental regulation on regional industrial structure in the Yangtze River Economic Zone of China. We show that the environmental regulation imposes a single-threshold dampening effect on the upgrading of industrial structure. Specifically, the dampening effect decreases significantly after regulation intensity crosses the threshold. In addition, there exists spatial heterogeneity in the relationship between environmental regulation and the industrial structure upgrading across the region. In the lower reaches of the Yangtze River Economic Zone, environmental regulation imposes a single-threshold positive impact on the regional industrial structure upgrading, which is further strengthened when the environmental regulation intensity passes the threshold. On the contrary, there is a single negative relationship between environmental regulation and industrial structure upgrading in the upper and middle reaches of the Yangtze River. Therefore, when imposing environmental regulations, differential strategies across regions and industries should be adopted considering regional differences

    Prolonged Inhibitory Effects of Repeated Tibial Nerve Stimulation on the Micturition Reflex in Decorticated Rats

    No full text
    Objective: This study aimed to determine whether a short-term repeated stimulation of tibial nerve afferents induces a prolonged modulation effect on the micturition reflex in a decorticated rat model. Material and Methods: Fifteen female Sprague-Dawley rats (250-350 g) were fully decorticated and paralyzed in the study. Tibial nerve stimulation (TNS) was delivered by inserting two pairs of needle electrodes close to the nerves at the level of the medial malleolus. Constant flow cystometries (0.07 mL/min) at approximately ten-minute intervals were performed, and the micturition threshold volume (MTV) was recorded and used as a dependent variable. After four to five stable recordings, the tibial nerves of both sides were stimulated continuously for five minutes at 10 Hz and at an intensity of three times the threshold for alpha-motor axons. Six same stimulations were applied repeatedly, with an interval of five minutes between each stimulation. Mean MTV was calculated on the basis of several cystometries in each half-hour period before, during, and after the six repeated TNS. Results: During the experiment, all the animals survived in good condition with relatively stable micturition reflexes, and a significant increase in MTV was detected after TNS. The strongest effect (mean = 178%) was observed during the first 30 minutes after six repeated stimulations. This obvious threshold increase remained for at least five hours. Conclusions: A prolonged poststimulation modulatory effect on the micturition reflex was induced by short-term repeated TNS in decorticated rats. This study provides a theoretical explanation for the clinical benefit of TNS in patients with overactive bladder and suggests decorticated rats as a promising model for further investigation of the neurophysiological mechanisms underlying the bladder inhibitory response induced by TNS.Funding Agencies|Medical Scienti fic Research Foundation of Guangdong Province, China; Natural Science Foundation of Guangdong Province, China; National Natural Science Foundation of China; Chinese Postdoctoral Science Foundation; [2013A806]; [B2020011]; [2016A030307033]; [81802551]; [2020M672593]</p

    Uniformly dispersed carbon-supported bimetallic ruthenium-platinum electrocatalysts for the methanol oxidation reaction

    No full text
    Reducing the Pt-based electrocatalysts to sub-nanometer sizes is an effective way to achieve high utilization of noble metals. Herein, we report a successive route to synthesize carbon-supported bimetallic ruthenium-platinum electrocatalysts (Ru-Pt/C) with uniform dispersion and fine sizes. In this strategy, carbon-supported Ru nanoparticles (Ru/C) with a mean size of 1.4 nm are firstly prepared in a mixture of ethylene glycol and water, and the Pt precursors are then reduced in the presence of pre-formed Ru/C. The average diameter of the bimetallic Ru-Pt particles on carbon supports is 1.9 nm, which corresponds to one to two Pt layers deposited on the surface of Ru seeds. The as-prepared bimetallic Ru-Pt/C electrocatalysts are analyzed by the CO stripping voltammetry, a diagnostic electrochemical tool. Compared with the commercial PtRu/C catalyst and the control PtRu/C prepared by a conventional co-reduction method, the bimetallic Ru-Pt/C has higher electrochemical surface area (92.5 m(2) g(-1)) and mass activity (483 A g(-1)) for methanol oxidation reaction. The strategy reported in this study is effective to produce fine bimetallic Ru-Pt particles (less than 2.0 nm) with uniform dispersion and high activity.</p
    • …
    corecore