8 research outputs found

    The influence of adatom diffusion on the formation of skyrmion lattice in sub-monolayer Fe on Ir(111)

    Full text link
    Room temperature grown Fe monolayer (ML) on the Ir(111) single crystal substrate has attracted great research interests as nano-skyrmion lattice can form under proper growth conditions. The formation of the nanoscale skyrmion, however, appears to be greatly affected by the diffusion length of the Fe adatoms on the Ir(111) surface. We made this observation by employing spin-polarized scanning tunneling microscopy to study skyrmion formation upon systematically changing the impurity density on the substrate surface prior to Fe deposition. Since the substrate surface impurities serve as pinning centers for Fe adatoms, the eventual size and shape of the Fe islands exhibit a direct correlation with the impurity density, which in turn determines whether skyrmion can be formed. Our observation indicates that skyrmion only forms when the impurity density is below 0.006/nm2, i.e., 12 nm averaged spacing between the neighboring defects. We verify the significance of Fe diffusion length by growing Fe on clean Ir(111) substrate at low temperature of 30 K, where no skyrmion was observed to form. Our findings signify the importance of diffusion of Fe atoms on the Ir(111) substrate, which affects the size, shape and lattice perfection of the Fe islands and thus the formation of skyrmion lattice

    Creation of nano-skyrmion lattice in Fe/Ir(111) system using voltage pulse

    Full text link
    Magnetic ultrathin films grown on heavy metal substrates often exhibit rich spin structures due to the competition between various magnetic interactions such as Heisenberg exchange, Dzyaloshinskii-Moriya interaction and higher-order spin interactions. Here we employ spin-polarized scanning tunneling microscopy to study magnetic nano-skyrmion phase in Fe monolayer grown on Ir(111) substrate. Our observations show that the formation of nano-skyrmion lattice in the Fe/Ir(111) system depends sensitively on the growth conditions and various non-skyrmion spin states can be formed. Remarkably, the application of voltage pulses between the tip and the sample can trigger a non-skyrmion to skyrmion phase transition. The fact that nano-skyrmions can be created using voltage pulse indicates that the balance between the competing magnetic interactions can be affected by an external electric field, which is highly useful to design skyrmion-based spintronic devices with low energy consumption

    CXCL1: A new diagnostic biomarker for human tuberculosis discovered using Diversity Outbred mice.

    Get PDF
    More humans have died of tuberculosis (TB) than any other infectious disease and millions still die each year. Experts advocate for blood-based, serum protein biomarkers to help diagnose TB, which afflicts millions of people in high-burden countries. However, the protein biomarker pipeline is small. Here, we used the Diversity Outbred (DO) mouse population to address this gap, identifying five protein biomarker candidates. One protein biomarker, serum CXCL1, met the World Health Organization\u27s Targeted Product Profile for a triage test to diagnose active TB from latent M.tb infection (LTBI), non-TB lung disease, and normal sera in HIV-negative, adults from South Africa and Vietnam. To find the biomarker candidates, we quantified seven immune cytokines and four inflammatory proteins corresponding to highly expressed genes unique to progressor DO mice. Next, we applied statistical and machine learning methods to the data, i.e., 11 proteins in lungs from 453 infected and 29 non-infected mice. After searching all combinations of five algorithms and 239 protein subsets, validating, and testing the findings on independent data, two combinations accurately diagnosed progressor DO mice: Logistic Regression using MMP8; and Gradient Tree Boosting using a panel of 4: CXCL1, CXCL2, TNF, IL-10. Of those five protein biomarker candidates, two (MMP8 and CXCL1) were crucial for classifying DO mice; were above the limit of detection in most human serum samples; and had not been widely assessed for diagnostic performance in humans before. In patient sera, CXCL1 exceeded the triage diagnostic test criteria (\u3e90% sensitivity; \u3e70% specificity), while MMP8 did not. Using Area Under the Curve analyses, CXCL1 averaged 94.5% sensitivity and 88.8% specificity for active pulmonary TB (ATB) vs LTBI; 90.9% sensitivity and 71.4% specificity for ATB vs non-TB; and 100.0% sensitivity and 98.4% specificity for ATB vs normal sera. Our findings overall show that the DO mouse population can discover diagnostic-quality, serum protein biomarkers of human TB

    Coordinated regulation of vegetative phase change by brassinosteroids and the age pathway in Arabidopsis

    No full text
    Abstract Vegetative phase change in plants is regulated by a gradual decline in the level of miR156 and a corresponding increase in the expression of its targets, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes. Gibberellin (GA), jasmonic acid (JA), and cytokinin (CK) regulate vegetative phase change by affecting genes in the miR156-SPL pathway. However, whether other phytohormones play a role in vegetative phase change remains unknown. Here, we show that a loss-of-function mutation in the brassinosteroid (BR) biosynthetic gene, DWARF5 (DWF5), delays vegetative phase change, and the defective phenotype is primarily attributable to reduced levels of SPL9 and miR172, and a corresponding increase in TARGET OF EAT1 (TOE1). We further show that GLYCOGEN SYNTHASE KINASE3 (GSK3)-like kinase BRASSINOSTEROID INSENSITIVE2 (BIN2) directly interacts with and phosphorylates SPL9 and TOE1 to cause subsequent proteolytic degradation. Therefore, BRs function to stabilize SPL9 and TOE1 simultaneously to regulate vegetative phase change in plants

    Distinguishing artificial spin ice states using magnetoresistance effect for neuromorphic computing

    No full text
    Abstract Artificial spin ice (ASI) consisting patterned array of nano-magnets with frustrated dipolar interactions offers an excellent platform to study frustrated physics using direct imaging methods. Moreover, ASI often hosts a large number of nearly degenerated and non-volatile spin states that can be used for multi-bit data storage and neuromorphic computing. The realization of the device potential of ASI, however, critically relies on the capability of transport characterization of ASI, which has not been demonstrated so far. Using a tri-axial ASI system as the model system, we demonstrate that transport measurements can be used to distinguish the different spin states of the ASI system. Specifically, by fabricating a tri-layer structure consisting a permalloy base layer, a Cu spacer layer and the tri-axial ASI layer, we clearly resolve different spin states in the tri-axial ASI system using lateral transport measurements. We have further demonstrated that the tri-axial ASI system has all necessary required properties for reservoir computing, including rich spin configurations to store input signals, nonlinear response to input signals, and fading memory effect. The successful transport characterization of ASI opens up the prospect for novel device applications of ASI in multi-bit data storage and neuromorphic computing
    corecore