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Abstract

More humans have died of tuberculosis (TB) than any other infectious disease and millions

still die each year. Experts advocate for blood-based, serum protein biomarkers to help

diagnose TB, which afflicts millions of people in high-burden countries. However, the protein

biomarker pipeline is small. Here, we used the Diversity Outbred (DO) mouse population to

address this gap, identifying five protein biomarker candidates. One protein biomarker,

serum CXCL1, met the World Health Organization’s Targeted Product Profile for a triage

test to diagnose active TB from latent M.tb infection (LTBI), non-TB lung disease, and nor-

mal sera in HIV-negative, adults from South Africa and Vietnam. To find the biomarker can-

didates, we quantified seven immune cytokines and four inflammatory proteins

corresponding to highly expressed genes unique to progressor DO mice. Next, we applied

statistical and machine learning methods to the data, i.e., 11 proteins in lungs from 453

infected and 29 non-infected mice. After searching all combinations of five algorithms and

239 protein subsets, validating, and testing the findings on independent data, two combina-

tions accurately diagnosed progressor DO mice: Logistic Regression using MMP8; and Gra-

dient Tree Boosting using a panel of 4: CXCL1, CXCL2, TNF, IL-10. Of those five protein

biomarker candidates, two (MMP8 and CXCL1) were crucial for classifying DO mice; were

above the limit of detection in most human serum samples; and had not been widely

assessed for diagnostic performance in humans before. In patient sera, CXCL1 exceeded

the triage diagnostic test criteria (>90% sensitivity; >70% specificity), while MMP8 did not.

Using Area Under the Curve analyses, CXCL1 averaged 94.5% sensitivity and 88.8% speci-

ficity for active pulmonary TB (ATB) vs LTBI; 90.9% sensitivity and 71.4% specificity for
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ATB vs non-TB; and 100.0% sensitivity and 98.4% specificity for ATB vs normal sera. Our

findings overall show that the DO mouse population can discover diagnostic-quality, serum

protein biomarkers of human TB.

Author summary

More humans die of tuberculosis (TB) than any other infectious disease, yet diagnostic

tools remain limited. Here, we used the Diversity Outbred mouse population to discover

candidate protein biomarkers of human TB. By applying statistical methods and machine

learning to multidimensional data, we identified CXCL1 and MMP8 as the two most

promising protein biomarker candidates. When evaluated in samples from human

patients, CXCL1 achieved the World Health Organization’s targeted profile for a triage

diagnostic test, discriminating active TB from important clinical differential diagnoses:

latent Mtb infection and non-TB lung disease in HIV-negative adults. Overall, our studies

show how a translationally relevant animal population model can accelerate TB biomarker

discovery, validation, and testing for humans.

Introduction

Tuberculosis (TB) remains a global health crisis. The disease is diagnosed in 8–10 million

new patients each year and has a stagnant annual death rate of 1–1.5 million patients each

year. This is nearly 5000 deaths per day, comparable to the average daily death rate due to

COVID-19 [1]. Pulmonary TB accounts for 70–80% of all TB cases, is the contagious form of

TB, and has a 40–70% case fatality rate if untreated [2–5]. For many decades, inbred laboratory

mice provided valuable insight into host resistance to Mycobacterium tuberculosis (Mtb), by

careful experimentation to confirm effects of single cell types and single genes in context of a

fixed genetic background. The field is now undergoing a shift by (i) including genetically het-

erogenous animal models to identify factors that control Mtb-induced lung damage in

immune competent hosts; and (ii) using new means to identify biomarkers that meet the

World Health Organization’s (WHO) Target Product Profiles (TPPs) for diagnostic tests, i.e.

>90% sensitivity and>70% specificity for a triage diagnostic test; and�65% sensitivity and

�98% specificity for a detection diagnostic test [6–9]. Here, we use the Diversity Outbred

(DO) mouse population to help inform human TB biomarker investigation because its genetic

diversity rivals human genetic diversity [10], and the phenotype responses to Mtb infection

better model human TB [11–14]. A fraction of the DO population is highly susceptible and

inflammatory lung disease progresses early and rapidly with morbidity and mortality within

60 days of Mtb aerosol infection. These progressors develop lung granuloma necrosis, neutro-

philic inflammation, and fibrin thrombosis [12,13,15]. These human-like disease features do

not develop in C57BL/6 inbred mice, and rarely develop in other inbred strains [16,17].

Here, we infected hundreds of DO mice with a low dose of aerosolized Mtb Erdman and

examined a unique 119-gene expression signature and inflammatory and immunological

mediators to find protein biomarker candidates. After exhaustively searching statistical models

and machine learning algorithms to identify optimal sets of biomarkers in DO mouse lungs,

two combinations performed better than the WHO TPPs when applied to independent DO

mouse population data: Logistic Regression with matrix metalloproteinase 8 (MMP8) and

Gradient Tree Boosting [18] with a panel of four biomarkers (CXCL1, CXCL2, tumor necrosis
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Factor (TNF), and interleukin-10 (IL-10)). This identified five protein biomarker candidates

to test in human sera. From these five, we down selected to MMP8 and CXCL1 because these

two were essential in their respective algorithms; had not been thoroughly investigated previ-

ously; and both were consistently above the limits of detection in sera from human patients.

The others (TNF, CXCL2, and IL-10) were not consistently above the limit of detection and

were not pursued in depth in human sera. We also tested S100A8 (calgranulin A) as a candi-

date protein biomarker in human sera to extend prior work by Gopal et al [11].

When tested in human sera, only CXCL1 met the WHO’s TPP triage diagnostic test criteria,

successfully discriminating active pulmonary TB (ATB) from LTBI; from non-TB lung disease;

and from normal sera. CXCL1 had 94.5% (95% confidence intervals (CI), 85.1–98.5%) sensi-

tivity and 88.8% (95% CI, 80.5–93.8%) specificity for ATB vs LTBI; and 90.9% (95% CI, 80.4–

96.1%) sensitivity and 71.4% (95% CI, 57.6–82.2%) specificity for ATB vs non-TB. CXCL1 also

maintained a 100.0% (95% CI, 93.5–100.0%) sensitivity and 98.4% (95% CI, 91.7–99.9%) speci-

ficity for ATB vs normal sera. MMP8 met TPP triage criteria for only one comparison: ATB vs

normal sera with 100% sensitivity and specificity. MMP8 did not meet WHO TPP triage test

criteria for ATB vs LTBI (76.4% (95% CI, 63.7–85.6%) sensitivity and 60.7% (95% CI, 50.3–

70.2%) specificity) and ATB vs non-TB (70.9% (95% CI, 57.9–81.2%) sensitivity and 59.2%

(95% CI, 45.2–71.8%) specificity). The candidate protein biomarker S100A8 did not achieve

TPP triage or detection criteria for any comparison.

Overall, using the DO mouse population lung gene expression profiles to guide protein bio-

marker candidates, coupled with extensive statistical and machine learning analyses, produced

a successful diagnostic quality, serum protein, biomarker for ATB in humans. The best per-

forming protein biomarker, CXCL1 had high sensitivity and specificity to diagnose HIV-nega-

tive, adults with ATB in high burden countries (South Africa and Vietnam), and discriminate

those patients from the important clinical differential diagnoses: LTBI and non-TB lung

disease.

Results

Mtb infection and pulmonary TB in DO mice

When infected with aerosolized Mtb, approximately one-third of DO mice rapidly succumb to

inflammatory lung disease with high bacterial burden within 60 days [12], recently termed

progressors by Ahmed et al in 2020 [19] and previously termed “supersusceptible” by Niazi

et al in 2015 [12]. The progressor phenotype is reproducible across sexes, institutions, aerosol

infection methods, and strains of Mtb [12,13,19]. Progressor DO mice significantly reduce sur-

vival of the DO population, compared to age- and sex-matched non-infected DO mice; and

compared to Mtb-infected C57BL/6J inbred mice (Fig 1A). The survival drop reflects a mortal-

ity peak 20–35 days after Mtb infection (Fig 1B) and morbidity is detected as early as 4 days

after Mtb (Fig 1C), when progressors start to lose body condition. The remaining ~70% of

Mtb-infected DO mice are recently termed controllers by Ahmed et al in 2020 [19] and (previ-

ously termed “susceptible” and “resistant” by Niazi et al in 2015 [12]. Controllers have no

external signs of morbidity, show normal body condition, and appear active and alert for at

least 60 days after infection, as do C57BL/6J inbred mice.

Lung transcriptome of progressor DO mice identifies potential biomarkers

candidates

Immune deficiency does not explain early-onset pulmonary TB in progressor DO mice. All

DO mice generate Mtb antigen specific TH1 immunity; and are protected by M. bovis BCG
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vaccination rather than developing BCGosis [12,13,20] which occurs in immune deficient

states. DO progressors and controllers also produce IL-17 and Mtb specific antibodies indica-

tive of TH17 and TH2 responses, respectively (S3 Fig). Our prior work identified three neutro-

phil chemokines: CXCL1, CXCL2, CXCL5 that diagnosed progressor DO mice with modest

accuracy [12]. To identify additional potential biomarkers, we followed 32 Mtb-infected DO

mice for 157 days, and profiled total lung RNA for gene expression by microarray. Ten pro-

gressor DO mice succumbed to pulmonary TB before 60 days; 11 controllers succumbed to

pulmonary TB between 95–157 days; and 11 controllers survived 157 days with no morbidity

and were euthanized at 157 days. Five age- and sex-matched non-infected DO controls were

also profiled. An analysis of variance revealed that 20,623 of the 25,206 interrogated genes

were significantly differentially expressed (FDR q< 0.05) across the three groups. Additional

filters (fold change > 2 for both the progressor vs non-infected and progressor vs controller

comparisons) were then applied to obtain a set of 119 genes that are specifically and highly

expressed in the lungs of progressor DO mice (Fig 2). Of those 119 genes, three: S100a8,

Mmp8, and Cxcl2 appeared in 18 of 31 pathways using Enrichr (S1 Table). As expected, based

on lung granuloma features of progressor DO mice [12,14,21], all transcriptomic-identified

pathways in the lungs of progressor DO mice converged on acute inflammation: Neutrophil

(granulocyte) recruitment and degranulation; positive inflammatory signaling via cytokines

and chemokines; and extracellular matrix degradation (S1 Table).

Immune and inflammatory proteins in lungs of Mtb-infected mice

To generate data sets to identify protein biomarker candidates, we quantified S100A8, CXCL2,

and MMP8 (i.e., protein products translated from S100a8, Mmp8, and Cxcl2 mRNA, which

were abundant in lungs of progressor DO mice); a suite of TH1 proinflammatory cytokines

required to resist Mtb (i.e., Interferon (IFN)-γ, TNF, and IL-12 (p40 and p70); one immune

suppressive cytokine (IL-10); and neutrophil chemokines known to contribute to Mtb-induced

inflammation: CXCL1, CXCL5 [22–24]. We also included Vascular Endothelial Growth Factor

because it is one component of an independently validated, promising biomarker panel identi-

fied by Ahmad et al. for TB diagnosis [7].

Fig 1. Survival, deaths due to pulmonary TB, and morbidity onset. We infected 8-10-week-old, female DO (n = 657) and C57BL/6J (n = 66) mice with ~25 Mtb
bacilli by inhalation, monitored for health daily, and euthanized the progressor DO mice that developed any one of three IACUC-approved morbidity criteria: body

condition score<2; severe lethargy; or respiratory distress (i.e. increased respiratory rate and effort). Within 60 days, 34% of DO mice succumbed to pulmonary TB

and required euthanasia due to pulmonary TB (progressors), while 66% survived (controllers). All non-infected DO mice (n = 40) and all Mtb-infected C57BL/6J

inbred mice survived 60 days without morbidity or mortality (p< 0.0001 by Log-rank Mantel-Cox test) (A). When progressor DO succumbed, a mortality wave

occurred between 21–52 days and peaked 25–35 days (B). Morbidity in progressor DO mice began as early as 4 days after Mtb infection and peaked at 18 days post-

infection (C).

https://doi.org/10.1371/journal.ppat.1009773.g001
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We quantified proteins in the lungs of Mtb-infected DO mice, C57BL/6J mice, and non-

infected age- and sex-matched control DO mice (Fig 3, panels A-K) from 5 independent

experimental infections, summarized in Table 1. All proteins except IL-10, IL-12p40, IL-

12p70, and VEGF were significantly higher in the lungs of progressor DO mice compared to

all other groups.

Identification of biomarker panels using machine learning and statistical

methods

We organized the data from the five different experimental infections of DO mice shown in

Table 1 and Fig 3 into discovery and independent cohorts (Fig 4) To identify protein bio-

marker candidates.

First, we applied best-subset feature selection with 5-fold cross validation to the training

data. Data from C57BL/6J mice (n = 42; 10.6% of all data) were included with controller DO

mice because C57BL/6J inbred mice survive > 60 days without morbidity/mortality (Figs 1

and 3). From the 478 possible classifiers (a classifier refers to an algorithm and its protein bio-

marker candidates), Logistic Regression with MMP8 (S2 Table) achieved 0.95 AUC, 94.1%

sensitivity and 87.4% specificity for classifying progressor DO mice and controller mice (DO

and C57BL/6J) on the testing data held back from the discovery cohort (Fig 4). To avoid over-

fitting, we validated performance of Logistic Regression with MMP8 on the testing portion of

the discovery cohort, achieving 0.96 AUC with 94.4% sensitivity and 87.3% specificity. On

data from the independent cohort, the classifier achieved 0.987 AUC (Fig 5A), 78.3% sensitiv-

ity, 100% specificity, 100% positive predictive value (PPV) and 94.9% negative predictive value

(NPV) (S1 Fig). Although its sensitivity was below the TPP triage test target, Logistic

Fig 2. 119 genes are significantly highly expressed in lungs of progressor DO mice, compared to controller and

non-infected DO mice. Microarray gene expression profiling identified a set of 119 genes whose expression changed

significantly across all groups (moderated ANOVA FDR q< 0.05) and were upregulated> 2-fold in progressor DO

mice (n = 10; dark brown) relative to both non-infected DO mice (n = 5; gray) and controller DO mice (n = 22; tan).

Rows and columns correspond to genes and individual DO mice, respectively. The number of days from the start of

the experiment to the euthanasia of each animal is shown below each column. Hierarchical clustering was performed

across all rows (left side of Figure) and was also performed separately within each group (top of Figure). The

expression values for each gene were z-normalized to a mean of zero and standard deviation of one across all samples

in each row; blue, white, and red indicate z-scores of� -2, 0, and� +2, respectively.

https://doi.org/10.1371/journal.ppat.1009773.g002
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Fig 3. Lung proteins and weight loss in Mtb-infected mice. We infected 8-10-week-old, female DO (n = 395) and C57BL/6J (n = 42) mice with Mtb bacilli by

inhalation over 5 independent experimental infections to generate data shown in panels A-K. All progressor DO mice were euthanized by 60 days of Mtb
infection due to the development of any one of three IACUC-approved early removal criteria: body condition score<2; severe lethargy; or respiratory distress

(i.e. increased respiratory rate and effort). The non-infected DO mice, controller DO mice, and C57BL/6J showed no morbidity. We measured lung protein

biomarkers using sandwich ELISAs (A-K). In panel (L), weight loss was calculated for each mouse as a percent of its peak body weight from the same 5

independent experiments plus 1 additional experiment for which lung protein data was not available. All data were lognormal distributed and analyzed by

Kruskal-Wallis one-way ANOVA with Dunn’s multiple comparisons post-tests (�p<0.05; ��p<0.01; ���p<0.001; ����p<0.0001). Each dot repsesents 1 mouse.

https://doi.org/10.1371/journal.ppat.1009773.g003
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Regression with MMP8 was highly attractive because it used a single biomarker and a linear

decision boundary. However, the classifier’s specificity across experiments was inconsistent,

which led us to identify another classifier that performed with greater consistency.

We sought a classifier capable of 90% sensitivity and 70% specificity in each experimental

infection used in discovery. Among the identified classifiers only three (S3 Table) had >80%

minimum experiment sensitivity and 70% minimum experiment specificity in the leave-one-

experiment-out setting. From the three, we pursued Gradient Tree Boosting with the bio-

marker panel CXCL1, CXCL2, TNF, and IL-10 because it achieved the highest minimum

experiment sensitivity (93.3%), had high experiment-wise sensitivity (97.3%) and overall sensi-

tivity (96.6%).

In the testing portion of the discovery cohort, the four-biomarker panel (CXCL1, CXCL2,

TNF, and IL-10) achieved 96.9% and 94.4% sensitivity and specificity, respectively, across all

four experiments combined. In the leave-one-experiment-out setting, the panel had 87.5% and

70% minimum experiment sensitivity and specificity, respectively. In the independent cohort,

the four-biomarker panel achieved 91.3% sensitivity and 81.7% specificity, satisfying the WHO

TPP performance criteria for a triage test. The PPV and NPV of the classifier were 55.3% and

97.4%, respectively (S1 Fig), and its AUC was 0.95 (Fig 5B). We evaluated the classifier further

using the 27 age- and sex-matched non-infected DO mice and it achieved 100% specificity. Of

the 4 biomarkers in the panel, CXCL1 and CXCL2 had more influence in classification perfor-

mance than TNF or IL-10, shown by higher variable importance values of 0.62, 0.32, 0.04, and

0.02, respectively.

To determine how each protein biomarker candidate contributes to classifier performance,

we measured the average percent difference. MMP8 achieved the highest effect, with an average

percent difference of 11.31%, followed by CXCL1 (5.8%) and CXCL2 (4.82%) (S4 Table). Fig 6

demonstrates this effect graphically by showing that biomarker panels lacking CXCL1, CXCL2,

or MMP8 have lower AUC values than the biomarker sets that contain at least 1 of these 3.

Performance of MMP8 and CXCL1 to diagnose human patients with active

TB

We pursued MMP8 and CXCL1 as candidate diagnostic biomarkers because neither have

been fully investigated in humans and both performed well under different conditions in DO

mice. MMP8 is the biomarker used in the first classifier and CXCL1 had the highest variable

importance among the panel used in the second classifier. We also quantified and examined

S100A8 (calgranulin A) for diagnostic performance in human samples to follow up Gopal et al
[11]. We obtained sera from HIV-negative adults from South Africa and Vietnam with ATB,

LTBI, or non-TB lung disease from the Foundation for Innovative Diagnostics. Pooled serum

from healthy individuals served as controls. MMP8, CXCL1, and S100A8 protein levels were

Table 1. Mouse class, euthanasia time points (weeks after Mtb infection), and numbers of mice used to quantify

proteins in lungs. The first column denotes the class of mice; the second column denotes the euthanasia time point

(weeks after Mtb infection); and the third column denotes the number of mice euthanized in each week separated by

semi columns. There was substantial overlap in euthanasia weeks for the 4 classes. No progressor DO mice survived

longer than 8 weeks, so none could be included in the> 14-week timepoint. The table contains information from the

same 5 independent experimental infections shown below in Fig 3, panels A-K; and Fig 4.

Class of mice Euthanasia time point (weeks after Mtb infection) Number of mice

Not infected DO 5; 7; 8; >14 15; 5; 9; 5

Progressor DO 3; 4; 5; 6; 7 2; 96; 44; 14; 3

Controller DO 5; 6; 7; 8; >14 80; 61; 116; 66; 45

C57BL/6J 5; 6; 7; 8 10; 6; 6; 20

https://doi.org/10.1371/journal.ppat.1009773.t001
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significantly higher in sera from patients with ATB to other groups (Fig 7). MMP8 was above

the limit of detection in all samples tested. CXCL1 was above the limit of detection in all serum

samples from ATB patients but not the other 3 patient categories; and S100A8 was below the

assay limit of detection for many samples in all patient categories.

The following was observed for determining diagnostic performance of MMP8, CXCL1,

and S100A8 by AUC analyses, summarized in Table 2. For ATB vs normal sera, MMP8 had

perfect AUC (1.00), 100% (95% CI, 93.5–100.0%) sensitivity and 100% (95% CI, 94.4–100.0%)

specificity; CXCL1 had 0.999 (95% CI, 0.998–1.00) AUC, 100.0% (95% CI, 93.5–100.0%) sensi-

tivity and 98.4% (95% CI, 91.7–99.9%) specificity; and S100A8 had 0.77 (95% CI, 0.674–0.865)

AUC, 72.7% (95% CI, 59.8–82.7%) sensitivity and 60.0% (95% CI, 47.9–71.0%) specificity

(S2 Fig). For ATB vs LTBI, MMP8 had 0.774 (95% CI, 0.691–0.857) AUC, 76.4% (95% CI,

Fig 4. Flow chart of sample organization and datasets. The top most five boxes denote the initial Mtb dose and the number of DO and C57BL/6J (if used) mice for each

of the experiments. The succeeding five boxes report the number of mice in each class. We used the controller and progressor mice from Exp. 1, Exp. 2, Exp. 3 and Exp. 4

in the discovery phase; and controller and progressor mice from Exp. 5 in the independent evaluation. The first number to the right of “n =“ denotes the number of

samples that do not have any missing values in CXCL5, CXCL2, CXCL1, IFN-γ, TNF, IL-12, IL-10, and their meta data, and the second one within the paranthesis denotes

the number of samples that do not have any missing lung biomarkers.

https://doi.org/10.1371/journal.ppat.1009773.g004
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63.7–85.6%) sensitivity and 60.7% (95% CI, 50.3–70.2%) specificity; CXCL1 had 0.972 (95%

CI, 0.950–0.994) AUC, 94.5% (95% CI, 85.1–98.5%) sensitivity and 88.8% (95% CI, 80.5–

93.8%) specificity; and S100A8 had 0.742 (95% CI, 0.653–0.831) AUC, 72.7% (95% CI, 59.8–

82.7%) sensitivity and 64.0% (95% CI, 53.7–73.2%) specificity (S2 Fig). For ATB vs non-TB,

MMP8 had 0.741 (95% CI, 0.647–0.835) AUC, 70.9% (95% CI, 57.9–81.2%) sensitivity and

59.2% (95% CI, 45.2–71.8%) specificity; CXCL1 had 0.921 (95% CI, 0.871–0.970) AUC, 90.9%

(95% CI, 80.4–96.1%) sensitivity and 71.4% (95% CI, 57.6–82.2%) specificity; and S100A8 had

0.764 (95% CI, 0.669–0.858) AUC, 74.5% (95% CI, 61.7–84.2%) sensitivity and 71.4% (95% CI,

57.6–82.2%) specificity (S2 Fig).

Discussion

The WHO introduced the TPPs in 2014, to unify and promote development efforts for TB

diagnostics appealing to end-user requirements for establishing blood-based biomarkers [9]. A

Fig 5. Receiver Operating Characteristics (ROC) curves of classifier performance to diagnose progressor Mtb-infected DO mice. A) Logistic Regression with

MMP8, and B) Gradient Tree Boosting with CXCL1, CXCL2, TNF, and IL-10. Blue and orange curves correspond to the AUC in the discovery cohort (n = 345 for A and

n = 407 for B) and independent cohort (n = 116) respectively for both A and B.

https://doi.org/10.1371/journal.ppat.1009773.g005

Fig 6. Classifiers using lung protein biomarker candidates CXCL1, CXCL2, or MMP8 have the highest performance. Bar chart of 5-fold-cross validation AUC of

1023 different biomarker panels sorted in descending order. Y-axis denotes the AUC and each bar in the x-axis corresponds to a different panel. Yellow, green and teal

bars indicate the classifiers using any one of the three lung protein biomarker candidates, any two of the three, and all three respectively. Magenta bars indicate the

classifiers that did not include CXCL1, CXCL2 or MMP8. Classifiers that did not include CXCL1, CXCL2, or MMP8 all had AUCs lower than 0.92, the red dashed line.

https://doi.org/10.1371/journal.ppat.1009773.g006
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systematic review of TB biomarker papers published between 2010 and 2017, identified 44

panels or single biomarkers that satisfy a TPP criterion, and simultaneously determined that

only one panel had a low risk of bias using QUADAS-2 assessments (study design, sampling,

negative population, timing, reference standard and blinding) [6]. The panel was ECM1, myo-

globulin, HCC1, IL-21, ENA-78, TPA, IL-12(p40) and IL-13 which achieved 100% (95% CI,

83.2–100%) sensitivity and 95% (95% CI, 68.1–99.9%) specificity; however, sample size was

relatively small [25]. A more recent study identified a protein biomarker panel consisting of

IL-6, IL-8, IL-18, VEGF, and anti-Ag85 which nearly achieved TPP criteria on hundreds of

patient samples from geographically distinct regions [7]. Guidance from the systematic review

[6] and results from Ahmad et al [7] demonstrate larger samples and additional approaches

are needed for biomarker discovery, validation, and independent testing.

To address that need, we model human responses to Mtb by using the DO mouse popula-

tion. Like humans, DO mice are highly genetically diverse and show variable responses and

outcomes following aerosol infection with virulent Mtb [12,13]. In 2015, we classified Mtb-
infected DO mice as supersusceptible, susceptible, and resistant using 166 Mtb-infected DO

mice and we generated a biomarker decision tree that diagnosed the classes with about 70%

Fig 7. MMP8, CXCL1 and S100A8 protein levels in human sera from patients with active pulmonary TB (ATB), latent Mtb
infection (LTBI), non-TB disease and normal individuals. We tested serum from HIV-negative patients ATB, LTBI, non-TB disease

and replicates from pooled normal for MMP8 (A), CXCL1, (B) and S100A8 (C) by ELISA, and analyzed data by Kruskal-Wallis one-

way ANOVA with Dunn’s multiple comparisons post-tests (�<0.05, ����p<0.0001). Dashed lines show the limits of detection (LOD):

MMP8 LOD = 17.47 pg/mL, CXCL1 LOD = 7.46 pg/mL, and S100A8 LOD = 6.59 pg/mL.

https://doi.org/10.1371/journal.ppat.1009773.g007

Table 2. Serum protein biomarker AUC analyses in human patient sera. AUC, sensitivity, and specificity values of CXCL1, MMP8, and S100A8 are given for active pul-

monary TB (ATB) vs pooled normal, ATB vs latent Mtb infection (LTBI) infection, and ATB vs non-TB comparisons. We denoted the 95% confidence intervals in the

parenthesis. For each comparison and each column, the highest value is highlighted in bold.

Name AUC Sensitivity (%) Specificity (%)

ATB vs Normal CXCL1 0.999 (0.998–1.00) 100.0 (93.5–100.0) 98.4 (91.7–99.9)

MMP8 1.00 100.0 (93.5–100.0) 100.0 (94.4–100.0)

S100A8 0.77 (0.674–0.865) 72.7 (59.8–82.7) 60.0 (47.9–71.0)

ATB vs LTBI CXCL1 0.972 (0.950–0.994) 94.5 (85.1–98.5) 88.8 (80.5–93.8)

MMP8 0.774 (0.691–0.857) 76.4 (63.7–85.6) 60.7 (50.3–70.2)

S100A8 0.742 (0.653–0.831) 72.7 (59.8–82.7) 64.0 (53.7–73.2)

ATB vs non-TB CXCL1 0.921 (0.871–0.970) 90.9 (80.4–96.1) 71.4 (57.6–82.2)

MMP8 0.741 (0.647–0.835) 70.9 (57.9–81.2) 59.2 (45.2–71.8)

S100A8 0.764 (0.669–0.858) 74.5 (61.7–84.2) 71.4 (57.6–82.2)

https://doi.org/10.1371/journal.ppat.1009773.t002
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accuracy [12]. In 2020, Ahmed et al [19] put forth different terms (progressor and controller)

based on lung RNAseq from 29 Mtb-infected DO mice, effectively aligning terms and immune

correlates with lung responses in Mtb-infected macaques. Here, we have dropped “supersus-

ceptible, susceptible, and resistant” adopted the progressor and controller terminology as well.

With > 500 Mtb-infected DO mice in our data set, we classify progressors based on

survival< 60 days (Fig 1), who develop lung disease characterized by neutrophilic influx [12],

granuloma necrosis [15], and convergent pathways of acute inflammation (S1 Table). We have

also established means to diagnose progressors with high accuracy (91.50 ± 4.68%) by several

other methods including a novel “imaging biomarker” generated via artificial intelligence,

which performs comparably to expert veterinary pathologists (> 94.95%) using H&E stained-

lung sections [14]. We very recently established a lung 5-gene expression signature (serpina3n,

ifitm6, serpina3m, ms4a8a and cxcr2) that performed well on cross-validation (n = 77 DO

mice) and external testing (n = 33 DO mice), achieving sensitivity and specificities of 88%

and> 93% in both conditions [21].

Here, we show how the DO mouse population can be used to find translationally relevant

protein biomarkers for human ATB. We identified two classifiers that discriminate progressor

DO mice from controllers (and from non-infected DO mice): (i) Logistic Regression with

MMP8 and (ii) Gradient Tree Boosting with a panel of four biomarkers (CXCL1, CXCL2,

TNF, and IL-10). The first classifier had an advantage of being a single biomarker and a simple

regression model, and MMP8 satisfied the minimal requirements of a WHO TPP detection

test. However, the classifier’s performance varied across experiments attributed to the different

criterion used in feature selection. The second classifier performed consistently across inde-

pendent experiments and achieved the WHO triage test specifications with the operating

points selected in the discovery cohort.

In our studies, two proteins from the lungs of DO mice (MMP8, and CXCL1) were the

most promising biomarker candidates. When tested in sera from HIV-negative adults from

countries with high TB burden (South Africa and Vietnam), both MMP8 and CXCL1 were sig-

nificantly increased in serum from patients with ATB compared to patients with LTBI, to

patients with non-TB lung disease, and to pooled sera from normal individuals. However, only

CXCL1 had sensitivity and specificity higher than the WHO recommendations for a triage test

to diagnose human patients with ATB. CXCL1 maintained high AUCs, successfully discrimi-

nating ATB from LTBI (0.972) and ATB from non-TB lung disease (0.921). MMP8 did not

meet TPP criteria and its AUCs were substantially lower (0.774 for ATB vs LTBI and 0.741 for

ATB vs non-TB), because the sample distribution ranges overlapped.

The human gene CXCL1 was previously identified as part of a neutrophil-driven gene

expression signature common in blood samples from ATB patients.[26] However, the proteins

MMP8 and CXCL1 have not been thoroughly investigated. TB biomarkers with the highest

AUC values reported in humans include C-reactive protein, transferrin, IFN-γ, IP-10, IL-27,

and interferon–inducible T Cell Alpha Chemoattractant [27–35]. Only two studies reported

MMP8 as a biomarker [36,37] and three studies measured CXCL1 [38–40]. Albuquerque et al.
[36] reported only the diagnostic performance of a panel containing MMP8 and not its univar-

iate performance. Kathamuthu et al. [37] measured eight different MMP family proteins

including MMP8 in plasma samples and reported an AUC for MMP8 as 0.774 for ATB vs

healthy controls. Like our results (AUC of 0.774), investigators reported AUC of 0.799 for

MMP8 to discriminate ATB vs LTBI. However, an important patient group was not included

in their MMP8 analyses: non-TB lung disease. A few other investigators quantified MMP2,

MMP3 and MMP9 (proteins functionally related to MMP8) but did not pursue them further

as diagnostic biomarker candidates due to missing data [7], or inconsistent statistical differ-

ences [27,35]. Three studies measured CXCL1 [38–40] and identified statistically significant
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differences in TB patients, but were not analyzed for diagnostic performance due to small sam-

ple sizes and different sample types: n = 44 to 88 for plasma [38]; n = 11 to 27 for serum [39];

and n = 11 to 27 and n = 32 to 72 for saliva [39,40].

Prior work suggested the protein multimer S100A8/S100A9 (calprotectin) as a potential

biomarker by detecting statistically higher protein levels [11] and s100a8 and s100a9 gene

expression [19] in DO mice, and in patients with ATB compared to LTBI and to healthy con-

trols [11]. The studies did not report diagnostic performance, however. Here, we identified

one of the two components of calprotectin, S100A8 (calgranulin A) and its gene s100a8 were

significantly higher in progressor DO mice compared to controller. In human sera, S100A8

was also significantly higher in ATB compared to non-TB lung disease, LTBI, and pooled sera

from normal individuals but many samples were below the limit of detection (Fig 7). When we

tested S100A8’s performance as a diagnostic serum protein biomarker, it failed to meet the

WHO TPP criteria. We did not examine S100A9 (calgranulin B) or the multimer S100A8/A9

for diagnostic performance.

Recently published work by Ahmad et al in 2020[19], compared genes differentially

expressed in DO mouse and macaque lungs; and blood samples from humans to identify

immune correlates of disease and resistance across different species and disparate samples. We

examined their publicly available data for the gene names of our 11 candidate protein bio-

markers. All 11 of our biomarker candidate genes’ expression were significantly increased in

one or more comparisons of progressor vs controller; and progressor vs naive in DO mouse

and macaque lungs described by Ahmad et al. Specifically, ifng, tnf, cxcl1, vegfa, cxcl2, and

vegfd were increased in progressor for all four comparisons; il10, il12b, s100a8, and mmp8
were increased in progressor in 3 of 4 comparisons; vegfb and cxcl5 were increased in 2 out of

the 4 comparisons; Vegfc was increased in only one of the comparisons. None of our 11 protein

biomarker candidates’ gene names were amongst Ahmed et al’s list of the top 10 highly

expressed genes, which is not surprising, given that Ahmed et al focused on different compari-

sons, with fewer samples (n = 29), and used a different selection strategy. None of our 11 pro-

tein biomarker candidates were amongst the 13-mouse gene orthologs described as aligning

with the 16-gene predictive signature from human blood samples (i.e., the 16-gene ACS signa-

ture) [19]. Presumably, this reflects host species differences, tissue sample differences, or both.

Notably, two of our 11 lung protein biomarker candidates (S100A8 and MMP8) overlap with

genes up regulated in human blood in Ahmed et al, and none were down regulated.

Our work here discovering, validating, and independently testing TB biomarkers in DO

has some limitations. First, we used two separate datasets in the discovery cohort (n = 407 or

345) because of missing data. Ideally, when comparing two different classifiers, we should use

identical data sets to estimate out-of-sample performance. However, since mouse lungs are

small with limited volumes, not all lung samples were available to measure all biomarkers.

This contributed to missing values, and for simplicity, samples with missing values were

excluded from training, validation, and testing. Second, the WHO TPPs were intended for

non-sputum samples of humans [9] and not lung samples from experimentally infected mice.

We believe, however, that benchmarking against the TPPs increases our ability to find poten-

tial biomarker candidates, although we may me missing biomarkers that are unique to blood.

Our future studies will include non-lung samples from Mtb-infected DO mice. Third, the

number of human serum samples we used is smaller than the recent biomarker publications

such as [7] which has 179 TB patients and 138 patients with non-TB-lung disease. Our aim,

however, was to show a proof of concept that DO mice can discover translationally relevant

TB biomarkers. We hope that other investigators will reproduce our findings in larger studies

of TB patients with different forms of disease, co-morbidities, and patients with non-TB lung

disease.
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Overall, we show two important findings: First, that DO responses to Mtb exceed the ranges

of inbred mice, clearly demonstrating genetic control of variable susceptibility to Mtb. Their

responses mimics human disease and resistance phenotypes, providing the field with a power-

ful in vivo model for discovery. Second, that MMP8 and CXCL1 identified, validated, and

independently tested in lung samples from DO mice, are translationally relevant biomarker

candidates for human TB that may improve our ability to diagnose TB patients, and are wor-

thy of continued pursuit.

Materials and methods

Ethics statement

Tufts Institutional Animal Care and Use Committee (IACUC) approved animal experiments

under protocols G2012-53; G2015-33; G2018-33. Tufts Institutional Biosafety Committee

approved biohazardous infectious agent work under registrations GRIA04; GRIA10; and

GRIA17. De-identified serum samples from humans were purchased from the Foundation for

Innovative Diagnostics (FIND, Geneva, Switzerland) and approved for testing by Tufts Institu-

tional Review Board study 11675. Serum human pooled normal samples were purchased from

MP Biologicals (Santa Ana, California).

Mice and Mtb infection

Female DO (generations 15,16,21,22,34) and C57BL/6J mice were purchased from The Jack-

son Laboratory (Bar Harbor, ME) and housed in sterile BSL3 conditions at the New England

Regional Biosafety Laboratory (Tufts University, Cummings School of Veterinary Medicine,

North Grafton, MA). At 8-10-weeks old, mice were infected with aerosolized Mtb strain Erd-

man bacilli (~100 bacilli in experiments 1 and 2; ~25 bacilli in experiments 3, 4, 5) using a CH

Technologies nose-only exposure system. All mice were weighed at least twice per week, and

examined daily for lethargy, respiratory distress, and body condition [41]. Mice that met mor-

bidity criteria (body condition score < 2; severe lethargy; or respiratory distress prior to 60

days of infection were euthanized immediately, i.e., progressors [19] (previously termed

“supersusceptible” [12]). Mice that controlled infection were termed controllers [19] previ-

ously termed “not supersusceptible”[12]. All exposed mice were confirmed to be infected by

recovering live Mtb bacilli from homogenized lung tissue as described [12,20].

Lung RNA expression profiling and analysis

One lung lobe from each of 42 DO mice was homogenized in TRIzol™ and stored at -80C until

RNA extraction using Pure Link mini-kits (Life Technologies, Carlsbad, CA). 37 lung RNA

samples were of sufficient purity to be analyzed at the Boston University Microarray and

Sequencing Resource Core Facility (Boston, MA). Mouse Gene 2.0 ST CEL files were normal-

ized to produce gene-level expression values using the implementation of the Robust Multiar-

ray Average (RMA) [42] in the Affy package (version 1.62.0) [43] included in the

Bioconductor software suite [44] and an Entrez Gene-specific probeset mapping (17.0.0) from

the Molecular and Behavioral Neuroscience Institute (Brainarray) at the University of Michi-

gan [45,46]. Array quality was assessed by computing Relative Log Expression (RLE) and Nor-

malized Unscaled Standard Error (NUSE) using the affyPLM package (version 1.59.0). The

CEL files were also normalized using Expression Console (build 1.4.1.46) and the default pro-

besets defined by Affymetrix to assess array quality using the AUC metric. Moderated t tests

and ANOVAs were performed using the limma package (version 3.39.19) (i.e., creating simple

linear models with lmFit, followed by empirical Bayesian adjustment with eBayes). Correction
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for multiple hypothesis testing was accomplished using the Benjamini-Hochberg false discov-

ery rate (FDR) [47]. Human homologs of mouse genes were identified using HomoloGene

(version 68) [48]. All microarray analyses were performed using the R environment for statisti-

cal computing (version 3.6.0). Enrichr (https://amp.pharm.mssm.edu/Enrichr) was used to

determine the overrepresentation of Gene Ontology (GO) biological processes (version 2018)

within an input set on official mouse gene symbols.

Quantification of protein biomarkers in DO mouse lungs & human

samples

Two lung lobes from each mouse were homogenized in 2mL of phosphate buffered saline and

stored at -80C until use. Homogenized lung samples were serially diluted and tested for

CXCL5, CXCL2, CXCL1, TNF, MMP8, S100A8, IFN-γ, IL12p40, IL-12p70 heterodimer, IL-

10, and VEGF by sandwich ELISA using antibody pairs and standards from R&D Systems

(Minneapolis, MN), Invitrogen (Carlsbad, CA), eBioscience (San Diego, CA), or BD Biosci-

ences (San Jose, CA, USA), per kit instructions. Serum samples obtained from FIND were

HIV-negative adults. Patients were diagnosed using FIND’s criteria. Briefly, patients with ATB

were diagnosed by clinical signs, imaging, and confirmed with positive sputum microscopy or

culture for Mtb. Patients diagnosed with LTBI were immunologically reactive to Mtb antigens

and lacked clinical, radiographical, and microbiological evidence of ATB. Patients with non-

TB lung disease presented with clinical signs of coughing (resembling ATB) but had TB ruled

out. For additional details see S6 Table. MMP8, CXCL1, and S100A8 were quantified by

ELISA using antibody pairs and standards from R&D Systems (Minneapolis, MN), per kit

instructions.

Statistical analyses

Survival, weight loss, and ELISA data were analyzed and graphed in GraphPad Prism 8.4.2

with significance set at p< 0.05 and adjusted for multiple comparisons. Survival curves were

analyzed using Log-rank (Mantel-Cox) test. For lung biomarkers and weight loss, data was

analyzed for normal or lognormal distributions prior to Kruskal-Wallis one-way ANOVA and

Dunn’s post-tests, �p<0.05; ��p<0.01; ���p<0.001, ����p<0.0001. DO mouse studies for bio-

marker discovery were based on sample sizes recommended for human biomarker studies [6].

Studies using human sera were pilot studies to generate proof-of-concept results. All available

human serum samples were used in ELISA testing. AUC analyses used GraphPad Prism 8.4.3

and reported 95% confidence intervals. If multiple operating points satisfied >90% sensitivity

and>70% specificity, we selected the one with the higher Youden’s index. If none satisfy the

criterion, we selected the operating point closest to the region >90% sensitivity and>70%

specificity.

Machine learning algorithm development, implementation, and validation

Discovery cohort. The lung protein measurements from 4 experimental infections with

107, 84, 60, and 231 samples respectively are combined into a dataset with 482 mice in total.

Then, non-infected mice are removed, resulting in 453 mice. To address missing data, we con-

sidered two scenarios. In the first, 407 mice which do not have any missing values in the fol-

lowing seven biomarkers CXCL5, CXCL2, CXCL1, IFN-γ, TNF, IL-12, and IL-10 are selected.

In the second scenario, 345 mice that do not have any missing lung biomarker values are

selected. During feature selection, if any of the three potential biomarker candidates MMP8,

VEGF, S100A8 are included, then the second set is used. If none of them are included, then

the first set is used. The samples are split 75% for classifier selection which includes the
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selection of the classification algorithm, its hyper-parameters, and the best subset of biomark-

ers; and 25% for estimating the unbiased performance of the selection stratified by class (pro-

gressor and controller) and experiment number.

Leave-one-experiment-out setting. In the leave-one-experiment-out setting, three of the

four experiments in the discovery cohort are combined and used for training, and the remain-

ing one is used as the validation set, resulting in four different train/validation pairs. When the

training portion of the discovery cohort is used, the training and validation set sizes of the four

pairs are: 253,59; 267,45; 269,43;147,165, respectively. When the testing portion of the discov-

ery cohort is used, the training and validation set sizes of the four pairs are 253,17; 267,13;

269,12;147,53, respectively. If any of the biomarkers MMP8, VEGF, S100A8 are included in

the subset selection, then only the samples with complete measurements for all ten biomarkers

are used.

Independent cohort. In the independent cohort, there are 122 samples (93 controller, 23

progressor, and 6 not infected). No samples had missing values.

Experiment-wise metrics. First, the sensitivity (specificity) in each experiment is calcu-

lated and then averaged. Minimum experiment sensitivity (specificity) is calculated by obtain-

ing the sensitivity (specificity) in each of the experiments and then taking the minimum. In the

leave-one-experiment-out setting, experiment-wise sensitivity (specificity) is defined as the

average of the four sensitivity (specificity) values. Similarly, minimum experiment sensitivity

(specificity) is the minimum of the four sensitivity (specificity) values. To calculate the AUC,

an experiment-wise Receiver Operating Characteristics (ROC) curve is drawn where the y-axis

corresponds to sensitivity and the x-axis to the specificity and then the area under that curve is

calculated.

Preprocessing. Each protein biomarker candidate is standardized by subtracting the sam-

ple mean and dividing it by the uncorrected sample standard deviation. During training, only

training samples are used to estimate the population parameters. For the first approach during

testing, both the samples of the training and the testing sets are used to estimate the population

parameters to standardize the testing samples. This holds for testing on Discovery Cohort and

Independent Cohort. For the second approach, the population parameters estimated in train-

ing are used to standardize the test set.

Classification algorithm, hyper-parameter, and feature selection. We used two differ-

ent variations of best-subset selection. Using the first approach, we have identified Logistic

Regression with MMP8 and using the second approach we identified Gradient Tree Boosting

with CXCL1, CXCL2, TNF, and IL-10. During both approaches, for each subset of features in

the search space, all classification algorithms and their hyper-parameters are searched. For

each subset and each classification algorithm, hyper-parameters with the highest AUC are

selected for the first approach, and for the second approach, the ones with the highest experi-

ment-wise AUC are selected. To evaluate the out-of-sample performance, we used 5-fold

Cross-Validation (CV) and 100-fold CV for the first and the second approaches, respectively.

Subsets searched: The feature search space has all combinations of CXCL5, CXCL2, CXCL,

IFN-γ, TNF, IL-12, IL-10, and all combinations of CXCL2, CXCL1, IL-10, IL-12, MMP8,

VEGF, S100A8, resulting in 239 different subsets.

Classification algorithms searched. We compared the performance of linear classifica-

tion algorithms: Support Vector Machine (SVM), Logistic Regression with L1 regularization;

and non-linear classification algorithms: SVM with Radial Basis Function, Random Forest,

and Gradient Tree Boosting through 5-fold-CV in the training portion of the discovery cohort.

The performance of linear and non-linear classification algorithms was similar in their respec-

tive categories, so we selected one from each category. The selected two algorithms were Logis-

tic Regression with L1 regularization and Gradient Tree Boosting. Scikit-learn [49] is used for
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the implementation of the algorithms. The number of samples in each class is unbalanced;

therefore, each sample is re-weighted by its inverse class proportions in the loss functions of

both algorithms.

Hyper-parameters searched. For Gradient Boosting Tree, logloss is used and as hyper-

parameters learning rate (0.001, 0.01), number of trees (1,3,5), and max depth of a tree (1,3,5)

are searched for the first approach. For the second approach (0.01, 0.3, 0.5,1.) are searched for

the learning rate instead. For the Logistic Regression with L1 regularization, the weight of the

L1 loss is selected among (0.01,0.0316, 0.1, 0.316, 0.1) for both approaches. As the result of the

search, for the biomarker panel of CXL1, CXCL2, TBF and IL10, learning rate 0.1, number of

trees 3, and max depth of a tree 5 are selected. For the Logistic Regression with MMP8 all

hyper-parameters, we observed that the weight of L1 loss did not change the AUC for a classi-

fier with a single feature.

Retraining after classifier selection. After the classifier selection is complete, the selected

classifier with fixed hyper-parameters and selected features is re-trained on all training portion

of Discovery Cohort, then evaluated on the testing portion of it. Similarly, the selected classifier

is trained on all the Discovery Cohort before it is evaluated on the independent cohort.

Operating point selection. We selected the prediction threshold as a hyper-parameter

and selected it through K-fold-Cross Validation (CV). In the first approach, 5-fold-CV is used

and the threshold that achieves the highest sensitivity while maintaining at least 70% specificity

is selected. In the second approach, to reduce the error resulting from selecting a single thresh-

old for K-classifiers, we used a higher number of folds where during the classifier selection

100-fold-CV is used and 150-fold-CV is used when the selected classifier is retrained using

both training and the testing datasets. The operating point that maximizes the experiment-

wise sensitivity while achieving at least 70% specificity in each of the experiments is selected. If

two operating points satisfy the criteria and achieve a similar (<0.1%) experiment-wise sensi-

tivity the one with the higher experiment-wise specificity is selected.

Supporting information

S1 STARD Checklist. File contains Standards for Reporting Diagnostic accuracy studies

(STARD) checklist.

(PDF)

S1 Fig. Confusion matrices for classifying between progressor and controller mice in the

independent cohort. A) Logistic Regression with MMP8 and B) Gradient Tree Boosting with

CXCL1, CXCL2, TNF, and IL-10. Row labels and column labels indicate the correct and the

predicted labels, respectively.

(TIF)

S2 Fig. Confusion matrices for the biomarkers in human sera. The rows in the overall figure

correspond to CXCL1, MMP8, and S100A8, respectively. The first column denotes the results

for ATB vs pooled normal samples, the second denotes ATB vs LTBI, and the last one denotes

ATB vs non-TB. For each confusion matrix row labels and column labels indicate the correct

and the predicted labels, respectively.

(PNG)

S3 Fig. Additional lung proteins that we measured are shown (A-D). All data were lognormal

distributed and analyzed by Kruskal-Wallis one-way ANOVA with Dunn’s multiple compari-

sons post-tests (�p<0.05; ���p<0.001). Each dot represents 1 mouse. Dashed lines show the

limits of detection (LOD): For A-D LODs are 18.08 pg/mL, 89.27 pg/mL, 24.80 pg/mL, and
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84.12 pg/mL, respectively.

(TIF)

S1 Table. Pulmonary TB in progressor DO mice reflects acute inflammation, neutrophil

recruitment and activation, and extracellular matrix degradation. Enrichr identified the fol-

lowing gene ontology pathways using a set of 119 genes that were highly expressed in the lungs

of progressor DO mice compared to non-infected DO mice and to controller DO mice. GO

terms with adjusted p< 0.01 are shown, along with the human homologs of the genes overlap-

ping with the term. Expressed genes in bold were pursued as diagnostic biomarkers.

(DOCX)

S2 Table. 5-fold-Cross Validation (CV) results of the initial selection. The first three rows

achieved the highest AUC and the remaining rows achieved comparable AUC with a simpler

model. "Threshold" denotes the probability threshold selected. The standard deviation of the

five folds is denoted with ±.

(DOCX)

S3 Table. The 100-fold-Cross Validation (CV) performance of the three classifiers that sat-

isfy the criterion for both leave-one-experiment-out and four-experiments-combined set-

tings. Columns under “Leave-one-exp-out” and “Four-exp-combined” correspond to the

performance in leave-one-experiment-out setting and four-experiments-combined setting,

respectively. “Spec.” denotes specificity and “Sens.” denotes sensitivity. Sensitivity (specificity)

under the “Exp-Wise” columns indicate experiment-wise sensitivity (specificity) and sensitiv-

ity (specificity) under the “Min. Exp.” columns indicate minimum experiment sensitivity

(specificity) and sensitivity (specificity) under the “Overall” columns indicate sensitivity (spec-

ificity) (As defined in Materials and methods).

(DOCX)

S4 Table. Feature rankings of the ten biomarkers. "Avg." is average and "Diff." is difference.

In Materials and Methods, the calculation for average % difference is described. To calculate

the average difference, the same method is used but instead of averaging over % difference, it

is averaged over difference. Average AUC denotes the average AUC of the biomarker panels

that contain the biomarker. Average top 5 denotes the average AUC of the five biomarker pan-

els with highest AUC that contain the biomarker and average bottom 5 denotes the average

AUC of the five biomarker panels with the least AUC that contain the biomarker.

(DOCX)

S5 Table. The AUC values of the ten biomarkers in the discovery cohort for classifying

between progressor and controller mice. 95% confidence intervals are denoted in the paren-

thesis. AUC values with the confidence intervals were calculated using pROC [50].

(DOCX)

S6 Table. The patient demographics of the human sera obtained from FIND are shown.

Patients that are missing demographic information are omitted from the results displayed. For

rows next to “Country” and “Sex” the number of patients in each category and its percentage is

given. At the final row, the median and the IQR of the age is given.

(DOCX)

S7 Table. The 5-fold-CV AUC values of the 478 classifiers that are searched during the

first classifier selection. Highlighted in yellow are the six selected classifiers whose sensitivity

and specificity values are reported in S2 Table. The standard deviation of the five folds is
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denoted with ±.

(XLSX)

S8 Table. The 100-fold-CV performance of the 478 classifiers that are searched during the

second classifier selection. Highlighted in yellow are the three classifiers that satisfied the cri-

terion. Columns under “Leave-one-exp-out” and “Four-exp-combined” correspond to the per-

formance in the leave-one-experiment-out setting and four-experiments-combined setting,

respectively. In the leave-one-experiment-out setting, a different experiment is used as the vali-

dation set and the columns D-K denote the specificity and sensitivity values on the four valida-

tion sets. Columns L and M denote the average of the specificity and sensitivity values in

columns D-K, respectively. Columns N and O denote the minimum of the specificity and sen-

sitivity values in columns D-K, respectively. In the four-experiments-combined setting, four

experiments are combined into a dataset. Columns P-W denote the specificity and sensitivity

values calculated using only the samples from a single experiment. Columns X and Y denote

the average of the specificity and sensitivity values in columns P-W, respectively. Columns Z

and AA denote the minimum of the specificity and sensitivity values in columns P-W, respec-

tively. Columns AB and AC denote the sensitivity and specificity values computed in the usual

way i.e., using all the samples.

(XLSX)

S1 File. File contains Supplementary Methods, Supplementary Text and Supplementary

References.

(DOCX)
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