288 research outputs found

    Pregabalin alleviates postherpetic neuralgia by downregulating spinal TRPV1 channel protein

    Get PDF
    Purpose: To determine the mechanism involved in pregabalin-induced alleviation of postherpetic neuralgia in a rat model.Methods: Ninety-sixty healthy Sprague-Dawley (SD) rats were assigned to sham, model andpregabalin groups (32 rats per group). A model of postherpetic neuralgia (PN) was established. The expressions of IL-1β and TNF-α in spinal cord tissue were determined 7 days after administration of treatments. The proportions of fluorescence areas in astrocytes in the dorsal horn, prefrontal lobe and hippocampus, and level of spinal cord TRPV1 channel protein in each group were evaluated.Results: Relative to model rats, IL-1β and TNF-α in spinal cord of pregabalin rats were significantly reduced (p < 0.05). The areas of fluorescence in astrocytes in dorsal horn of spinal cord, prefrontal lobe and hippocampus of model group were significantly increased, relative to sham, but were decreased in rats in pregabalin group (p < 0.05).Conclusion: Pregabalin significantly alleviates postherpetic neuralgia via mechanisms which may be related to the inflammatory response of spinal dorsal horn and downregulation of TRPV1 channel protein expression. This finding may be useful in developing new drugs for alleviating postherpetic neuralgia

    Electrochemical Decalcification-Exfoliation of Two-Dimensional Siligene, SixGey: Material Characterization and Perspectives for Lithium-Ion Storage

    Get PDF
    A two-dimensional (2D) silicene-germanene alloy, siligene (SixGey), a single-phase material, has attracted increased attention due to its two-elemental low-buckled composition and unique physics and chemistry. This 2D material has the potential to address the challenges caused by low electrical conductivity and the environmental instability of corresponding monolayers. Yet, the siligene structure was studied in theory, demonstrating the material’s great electrochemical potential for energy storage applications. The synthesis of free-standing siligene remains challenging and therefore hinders the research and its application. Herein we demonstrate nonaqueous electrochemical exfoliation of a few-layer siligene from a Ca1.0Si1.0Ge1.0 Zintl phase precursor. The procedure was conducted in an oxygen-free environment applying a −3.8 V potential. The obtained siligene exhibits a high quality, high uniformity, and excellent crystallinity; the individual flake is within the micrometer lateral size. The 2D SixGey was further explored as an anode material for lithium-ion storage. Two types of anode have been fabricated and integrated into lithium-ion battery cells, namely, (1) siligene-graphene oxide sponges and (2) siligene-multiwalled carbon nanotubes. The as-fabricated batteries both with/without siligene exhibit similar behavior; however there is an increase in the electrochemical characteristics of SiGe-integrated batteries by 10%. The corresponding batteries exhibit a 1145.0 mAh·g-1 specific capacity at 0.1 A·g-1. The SiGe-integrated batteries demonstrate a very low polarization, confirmed by their good stability after 50 working cycles and a decrease in the solid electrolyte interphase level that occurs after the first discharge/charge cycle. We anticipate the growing potential of emerging two-component 2D materials and their great promise for energy storage and beyond.10 página

    The effect credit term structure of monetary policy on firms' "short-term debt for long-term investment" behavior: empirical evidence from China

    Get PDF
    This paper examines the effects and mechanism paths of monetary policy on firms' "short-term debt for long-term investment (SDFLI)" behavior using panel data of Chinese A-share listed firms from 2007-2019. The findings indicate that loose monetary policy suppresses corporate SDFLI behavior by lengthening corporate credit maturity structure through the credit maturity structure channel. In addition, heterogeneity analysis shows that loose monetary policy significantly inhibits the SDFLI behavior of state-owned enterprises(SOEs), non-high-tech firms, and firms in regions with high bank competition levels through the credit term structure channel, and the monetary policy credit term structure channel fails for non-state-owned enterprises(non-SOEs), high-tech firms, and firms in regions with low bank competition levels. The results of the heterogeneity analysis validate the plausibility that monetary policy affects firms' SDFLI behavior through the credit term structure channel

    Preliminary expression profile of cytokines in brain tissue of BALB/c mice with Angiostrongylus cantonensis infection

    Get PDF
    BACKGROUND: Angiostrongylus cantonensis (A. cantonensis) infection can result in increased risk of eosinophilic meningitis. Accumulation of eosinophils and inflammation can result in the A. cantonensis infection playing an important role in brain tissue injury during this pathological process. However, underlying mechanisms regarding the transcriptomic responses during brain tissue injury caused by A. cantonensis infection are yet to be elucidated. This study is aimed at identifying some genomic and transcriptomic factors influencing the accumulation of eosinophils and inflammation in the mouse brain infected with A. cantonensis. METHODS: An infected mouse model was prepared based on our laboratory experimental process, and then the mouse brain RNA Libraries were constructed for deep Sequencing with Illumina Genome Analyzer. The raw data was processed with a bioinformatics’ pipeline including Refseq genes expression analysis using cufflinks, annotation and classification of RNAs, lncRNA prediction as well as analysis of co-expression network. The analysis of Refseq data provides the measure of the presence and prevalence of transcripts from known and previously unknown genes. RESULTS: This study showed that Cys-Cys (CC) type chemokines such as CCL2, CCL8, CCL1, CCL24, CCL11, CCL7, CCL12 and CCL5 were elevated significantly at the late phase of infection. The up-regulation of CCL2 indicated that the worm of A. cantonensis had migrated into the mouse brain at an early infection phase. CCL2 could be induced in the brain injury during migration and CCL2 might play a major role in the neuropathic pain caused by A. cantonensis infection. The up-regulated expression of IL-4, IL-5, IL-10, and IL-13 showed Th2 cell predominance in immunopathological reactions at late infection phase in response to infection by A. cantonensis. These different cytokines can modulate and inhibit each other and function as a network with the specific potential to drive brain eosinophilic inflammation. The increase of ATF-3 expression at 21 dpi suggested the injury of neuronal cells at late phase of infection. 1217 new potential lncRNA were candidates of interest for further research. CONCLUSIONS: These cytokine networks play an important role in the development of central nervous system inflammation caused by A. cantonensis infection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-015-0939-6) contains supplementary material, which is available to authorized users

    How single-cell techniques help us look into lung cancer heterogeneity and immunotherapy

    Get PDF
    Lung cancer patients tend to have strong intratumoral and intertumoral heterogeneity and complex tumor microenvironment, which are major contributors to the efficacy of and drug resistance to immunotherapy. From a new perspective, single-cell techniques offer an innovative way to look at the intricate cellular interactions between tumors and the immune system and help us gain insights into lung cancer and its response to immunotherapy. This article reviews the application of single-cell techniques in lung cancer, with focuses directed on the heterogeneity of lung cancer and the efficacy of immunotherapy. This review provides both theoretical and experimental information for the future development of immunotherapy and personalized treatment for the management of lung cancer
    corecore