20 research outputs found

    Efficacy of autologous bone marrow buffy coat grafting combined with core decompression in patients with avascular necrosis of femoral head: a prospective, double-blinded, randomized, controlled study

    Get PDF
    Introduction Avascular necrosis of femoral head (ANFH) is a progressive disease that often leads to hip joint dysfunction and even disability in young patients. Although the standard treatment, which is core decompression, has the advantage of minimal invasion, the efficacy is variable. Recent studies have shown that implantation of bone marrow containing osteogenic precursors into necrotic lesion of ANFH may be promising for the treatment of ANFH. Methods A prospective, double-blinded, randomized controlled trial was conducted to examine the effect of bone-marrow buffy coat (BBC) grafting combined with core decompression for the treatment of ANFH. Forty-five patients (53 hips) with Ficat stage I to III ANFH were recruited. The hips were allocated to the control group (core decompression + autologous bone graft) or treatment group (core decompression + autologous bone graft with BBC). Both patients and assessors were blinded to the treatment options. The clinical symptoms and disease progression were assessed as the primary and secondary outcomes. Results At the final follow-up (24 months), there was a significant relief in pain (P \u3c0.05) and clinical joint symptoms as measured by the Lequesne index (P \u3c0.05) and Western Ontario and McMaster Universities Arthritis Index (P \u3c0.05) in the treatment group. In addition, 33.3% of the hips in the control group have deteriorated to the next stage after 24 months post-procedure, whereas only 8% in the treatment group had further deterioration (P \u3c0.05). More importantly, the non-progression rates for stage I/II hips were 100% in the treatment group and 66.7% in the control group. Conclusion Implantation of the autologous BBC grafting combined with core decompression is effective to prevent further progression for the early stages of ANFH. Trial registration ClinicalTrials.gov identifier NCT01613612. Registered 13 December 2011

    Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids

    No full text
    Abstract Background Perilla frutescens is well known for its high α-linolenic acid (ALA) accumulation in seeds and medicinal values as well as a source of edible and general-purpose oils. However, the regulatory mechanisms of the biosynthesis of fatty acid in its seeds remain poorly understood due to the lacking of sequenced genome. For better understanding the regulation of lipid metabolism and further increase its oil content or modify oil composition, time-course transcriptome and lipid composition analyses were performed. Results Analysis of fatty acid content and composition showed that the α-linolenic acid and oleic acid accumulated rapidly from 5 DAF to 15 DAF and then kept relatively stable. However, the amount of palmitic acid and linoleic acid decreased quickly from 5 DAF to 15DAF. No significant variation of stearic acid content was observed from 5 DAF to 25DAF. Our transcriptome data analyses revealed that 110,176 unigenes were generated from six seed libraries at 5, 10, 20 DAF. Of these, 53 (31 up, 22 down) and 653 (259 up, 394 down) genes showed temporal and differentially expression during the seed development in 5 DAF vs 10 DAF, 20 vs 10 DAF, respectively. The differentially expressed genes were annotated and found to be involved in distinct functional categories and metabolic pathways. Deep mining of transcriptome data led to the identification of key genes involved in fatty acid and triacylglycerol biosynthesis and metabolism. Thirty seven members of transcription factor family AP2, B3 and NFYB putatively involved in oil synthesis and deposition were differentially expressed during seed development. The results of qRT-PCR for selected genes showed a strong positive correlation with the expression abundance measured in RNA-seq analysis. Conclusions The present study provides valuable genomic resources for characterizing Perilla seed gene expression at the transcriptional level and will extend our understanding of the complex molecular and cellular events of oil biosynthesis and accumulation in oilseed crops

    Combining autologous bone marrow buffy coat and angioconductive bioceramic rod grafting with advanced core decompression improves short-term outcomes in early avascular necrosis of the femoral head: a prospective, randomized, comparative study

    No full text
    Abstract Background Treatment of avascular necrosis of the femoral head (ANFH) in young patients remains a clinical challenge. A current controversy is whether hip-preserving surgery results in better outcomes. The adverse effects of hip-preserving surgery are associated with the fill material for the necrotic areas. This study aims to evaluate the early effects of autologous bone marrow buffy coat (BBC) and angioconductive bioceramic rod (ABR) grafting with advanced core decompression (ACD) on early ANFH. Methods Forty-four (57 hips) patients with early ANFH from 2015 to 2020 were recruited for this study. They were randomized into two groups: group A received ACD, BBC, and ABR grafting; group B received treatment of ACD with β-tricalcium phosphate (β-TCP) granules and ABR grafting. The outcomes were assessed using the Harris Hip Scores (HHS) and survival rate analysis. The follow-up endpoint was defined as conversion to total hip arthroplasty (THA). Results Forty patients (51 hips) were ultimately included in this study for analysis. Compared with group B, patients in group A had higher postoperative function score (P = 0.032) and postoperative Harris Hip Scores (HHS) (P = 0.041). Kaplan-Meier analysis showed a trend that the survivorship of the femoral head was higher in group A than in group B. Conclusion The short-term follow-up results showed that the autologous bone marrow buffy coat and angioconductive bioceramic rod grafting with advanced core decompression is effective in the treatment of early ANFH. Trial registration Chictr.org.cn , ChiCTR2000039595. Retrospectively registered on 11 February 2015

    Additional file 2: of Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids

    No full text
    Figure S1. Gene assembly and functional annotation results of P. frutescens transcriptome. A: Length distributions; B: Annotation statistic of seven databases; C:Venn diagram of gene annotations via selected five database searching; D:Species distribution of BLAST hits against NR protein database; E: E-value distribution of the best hits against the NR protein database; F:similarity distribution of the best hits against the NR protein database. (PNG 417 kb

    Additional file 7: of Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids

    No full text
    Table S5. KEGG pathway enrichment analysis of differentially expressed genes between 20 DAF and 10 DAF seeds. (XLS 34 kb
    corecore