86 research outputs found

    Study on Emission Reduction Strategies of Dual-Channel Supply Chain Considering Green Finance

    Get PDF
    As a weapon for economic development, green finance plays an important supporting and promoting role in the economic recovery and transformation of enterprises in the post-epidemic era. By constructing a dual-channel supply chain model, this paper considers two situations in which manufacturers participate in carbon trading and green finance loans, and uses Stackelberg game to study the impact of different situations on participants’ profits and emission reduction decisions. The results show that: under the carbon trading mechanism, the carbon emission reduction level of the manufacturer is inversely proportional to the relevant price, and the demand and profit of the two channels increase with the increase in emission reduction; when carbon trading and green financial loans are carried out at the same time, participants have lower profits, but with the increase in emission reductions, it is still a growing trend

    Prevalence of prediabetes by the fasting plasma glucose and HbA1c screening criteria among the children and adolescents of Shenzhen, China

    Get PDF
    BackgroundPrediabetes is associated with an increased risk of cardiovascular diseases and all-cause mortality. Rare research in China has evaluated the prevalence of prediabetes among children and adolescents using the HbA1c criterion or the combined FPG-or-HbA1c diagnostic criterion, and researchers paid no attention to the distributions of blood glucose in Shenzhen, especially for juveniles.MethodsWe conducted a school-based cross-sectional study based on the first-year students from 17 primary, middle, and high schools. Prediabetes was defined as FPG of 5.6–6.9 mmol/L or HbA1c of 5.7%–6.4%. The crude and standardized prevalence of prediabetes with 95% confidence interval (95% CI) was estimated.ResultsA total of 7519 participants, aged 6 to 17 years, were included. For all subjects, the crude prevalence (95% CI) of prediabetes was 1.49% (1.21–1.77), 8.72% (8.08–9.36), and 9.80% (9.13–10.47) by the FPG-only, HbA1c-only, and FPG-or-HbA1c criteria, respectively. Based on the 2010 Shenzhen census population, the standardized prevalence was 1.56% (males 1.85%, females 1.19%), 11.05% (males 11.47%, females 10.53%), and 12.19% (males 13.01%, females 11.15%) by the corresponding criteria. The proportion of prediabetes was higher for males than females, and the prevalence decreased with grade for males but increased for females. The association of BMI and prediabetes was U-shaped curve, indicating higher rates of prediabetes for underweight and obesity people.ConclusionThe blood glucose status of children and adolescents in Shenzhen is worrisome, and the early detection and management of prediabetes are imperative

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Hexa-acylated LPS-lipid A deploys the appropriate level of fibrin to confer protection through MyD88

    No full text
    Objectives: Fibrin has been demonstrated to function protectively against pathogens in our previous studies, but we observed that a very high level of fibrin played a negative role during infection. We performed this research to address the complication. Methods: After infection, mice were monitored daily and harvested on day 4. The fibrin levels within the tissue samples were quantified by Western-blot. The in situ assay was used to detect plasminogen activators, protein C-ase and prothrombinase activation. PT-PCR was used to test coagulation factors expression. Results: Mice treated with Coumadin showed that the protection correlates with fibrin levels. By interacting with Toll-like receptor 4, the hexa-acylated lipopolysaccharide, although not the tetra-acylated lipopolysaccharide, activates coagulation and regulates plasminogen activator inhibitor 1, thrombin activatable fibrinolysis inhibitor and thrombomodulin expression through myeloid differentiation factor 88, leading to plasminogen activators, protein C-ase and prothrombinase activation and fibrin formation. Because of the regulation, fibrin formation was controlled to deposit appropriate levels and confer protection. Conclusions: We demonstrated that the appropriate level of fibrin formation was deployed by hexa-acylated LPS-lipid A through myeloid differentiation factor 88 to confer protection

    MoaE Is Involved in Response to Oxidative Stress in <i>Deinococcus radiodurans</i>

    No full text
    Molybdenum ions are covalently bound to molybdenum pterin (MPT) to produce molybdenum cofactor (Moco), a compound essential for the catalytic activity of molybdenum enzymes, which is involved in a variety of biological functions. MoaE is the large subunit of MPT synthase and plays a key role in Moco synthesis. Here, we investigated the function of MoaE in Deinococcus radiodurans (DrMoaE) in vitro and in vivo, demonstrating that the protein contributed to the extreme resistance of D. radiodurans. The crystal structure of DrMoaE was determined by 1.9 Å resolution. DrMoaE was shown to be a dimer and the dimerization disappeared after Arg110 had been mutated. The deletion of drmoaE resulted in sensitivity to DNA damage stress and a slower growth rate in D. radiodurans. The increase in drmoaE transcript levels the and accumulation of intracellular reactive oxygen species levels under oxidative stress suggested that it was involved in the antioxidant process in D. radiodurans. In addition, treatment with the base analog 6-hydroxyaminopurine decreased survival and increased intracellular mutation rates in drmoaE deletion mutant strains. Our results reveal that MoaE plays a role in response to external stress mainly through oxidative stress resistance mechanisms in D. radiodurans

    Structural and Functional Characterization of the Holliday Junction Resolvase RuvC from Deinococcus radiodurans

    No full text
    Holliday junctions (HJs) are four-way DNA structures, which are an important intermediate in the process of homologous recombination. In most bacteria, HJs are cleaved by specific nucleases called RuvC resolvases at the end of homologous recombination. Deinococcus radiodurans is an extraordinary radiation-resistant bacterium and is known as an ideal model organism for elucidating DNA repair processes. Here, we described the biochemical properties and the crystal structure of RuvC from D. radiodurans (DrRuvC). DrRuvC exhibited an RNase H fold that belonged to the retroviral integrase family. Among many DNA substrates, DrRuvC specifically bound to HJ DNA and cleaved it. In particular, Mn2+ was the preferred bivalent metal co-factor for HJ cleavage, whereas high concentrations of Mg2+ inhibited the binding of DrRuvC to HJ. In addition, DrRuvC was crystallized and the crystals diffracted to 1.6 &Aring;. The crystal structure of DrRuvC revealed essential amino acid sites for cleavage and binding activities, indicating that DrRuvC was a typical resolvase with a characteristic choice for metal co-factor

    MoaE Is Involved in Response to Oxidative Stress in Deinococcus radiodurans

    No full text
    Molybdenum ions are covalently bound to molybdenum pterin (MPT) to produce molybdenum cofactor (Moco), a compound essential for the catalytic activity of molybdenum enzymes, which is involved in a variety of biological functions. MoaE is the large subunit of MPT synthase and plays a key role in Moco synthesis. Here, we investigated the function of MoaE in Deinococcus radiodurans (DrMoaE) in vitro and in vivo, demonstrating that the protein contributed to the extreme resistance of D. radiodurans. The crystal structure of DrMoaE was determined by 1.9 &Aring; resolution. DrMoaE was shown to be a dimer and the dimerization disappeared after Arg110 had been mutated. The deletion of drmoaE resulted in sensitivity to DNA damage stress and a slower growth rate in D. radiodurans. The increase in drmoaE transcript levels the and accumulation of intracellular reactive oxygen species levels under oxidative stress suggested that it was involved in the antioxidant process in D. radiodurans. In addition, treatment with the base analog 6-hydroxyaminopurine decreased survival and increased intracellular mutation rates in drmoaE deletion mutant strains. Our results reveal that MoaE plays a role in response to external stress mainly through oxidative stress resistance mechanisms in D. radiodurans

    Extracellular dGMP enhances Deinococcus radiodurans tolerance to oxidative stress.

    Get PDF
    Free extracellular DNA provides nutrition to bacteria and promotes bacterial evolution by inducing excessive mutagenesis of the genome. To understand the influence of extracellular DNA fragments on D. radiodurans, we investigated cell growth and survival after extracellular DNA or dNMPs treatment. The results showed that the extracellular DNA fragments inhibited the growth of D. radiodurans. Interestingly, dGMP, a DNA component, enhanced D. radiodurans tolerance to H(2)O(2) and gamma-radiation significantly. Further experiments indicated that extracellular dGMP stimulated the activity of one catalase (KatA, DR1998), and induced gene transcription including the extracellular nuclease (drb0067). When this only extracellular nuclease gene (drb0067) in D. radiodurans was deleted, the mutant strain showed more sensitive to H(2)O(2) and gamma-radiation than the wild type strain. These results suggest that DRB0067 plays an important role in oxidative stress resistance. Taken together, we proposed a new anti-oxidation mechanism in D. radiodurans. This mechanism acts to increase expression levels of DRB0067 which then secretes active nuclease to degrade extracellular DNA fragments. The extracellular nuclease has a two-fold benefit, creating more free dNTPs for further cell protection and the removal of extracellular DNA fragments
    corecore