17,452 research outputs found

    Quantum computation in decoherence-free subspace with superconducting devices

    Get PDF
    We propose a scheme to implement quantum computation in decoherence-free subspace with superconducting devices inside a cavity by unconventional geometric manipulation. Universal single-qubit gates in encoded qubit can be achieved with cavity assisted interaction. A measurement-based two-qubit Controlled-Not gate is produced with parity measurements assisted by an auxiliary superconducting device and followed by prescribed single-qubit gates. The measurement of currents on two parallel devices can realize a projective measurement, which is equivalent to the parity measurement on the involved devices.Comment: v2: thoroughly rewritten version with title and motivation changed; v3: published version with detail dirivation

    Estimation and model selection in generalized additive partial linear models for correlated data with diverging number of covariates

    Full text link
    We propose generalized additive partial linear models for complex data which allow one to capture nonlinear patterns of some covariates, in the presence of linear components. The proposed method improves estimation efficiency and increases statistical power for correlated data through incorporating the correlation information. A unique feature of the proposed method is its capability of handling model selection in cases where it is difficult to specify the likelihood function. We derive the quadratic inference function-based estimators for the linear coefficients and the nonparametric functions when the dimension of covariates diverges, and establish asymptotic normality for the linear coefficient estimators and the rates of convergence for the nonparametric functions estimators for both finite and high-dimensional cases. The proposed method and theoretical development are quite challenging since the numbers of linear covariates and nonlinear components both increase as the sample size increases. We also propose a doubly penalized procedure for variable selection which can simultaneously identify nonzero linear and nonparametric components, and which has an asymptotic oracle property. Extensive Monte Carlo studies have been conducted and show that the proposed procedure works effectively even with moderate sample sizes. A pharmacokinetics study on renal cancer data is illustrated using the proposed method.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1194 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Scheme for remote implementation of partially unknown quantum operation of two qubits in cavity QED

    Get PDF
    By constructing the recovery operations of the protocol of remote implementation of partially unknown quantum operation of two qubits [An Min Wang: PRA, \textbf{74}, 032317(2006)], we present a scheme to implement it in cavity QED. Long-lived Rydberg atoms are used as qubits, and the interaction between the atoms and the field of cavity is a nonresonant one. Finally, we analyze the experimental feasibility of this scheme.Comment: 7 pages, 2 figure

    On the Universal Approximation Property and Equivalence of Stochastic Computing-based Neural Networks and Binary Neural Networks

    Full text link
    Large-scale deep neural networks are both memory intensive and computation-intensive, thereby posing stringent requirements on the computing platforms. Hardware accelerations of deep neural networks have been extensively investigated in both industry and academia. Specific forms of binary neural networks (BNNs) and stochastic computing based neural networks (SCNNs) are particularly appealing to hardware implementations since they can be implemented almost entirely with binary operations. Despite the obvious advantages in hardware implementation, these approximate computing techniques are questioned by researchers in terms of accuracy and universal applicability. Also it is important to understand the relative pros and cons of SCNNs and BNNs in theory and in actual hardware implementations. In order to address these concerns, in this paper we prove that the "ideal" SCNNs and BNNs satisfy the universal approximation property with probability 1 (due to the stochastic behavior). The proof is conducted by first proving the property for SCNNs from the strong law of large numbers, and then using SCNNs as a "bridge" to prove for BNNs. Based on the universal approximation property, we further prove that SCNNs and BNNs exhibit the same energy complexity. In other words, they have the same asymptotic energy consumption with the growing of network size. We also provide a detailed analysis of the pros and cons of SCNNs and BNNs for hardware implementations and conclude that SCNNs are more suitable for hardware.Comment: 9 pages, 3 figure

    Is Zb(10610)Z_b(10610) a Molecular State?

    Full text link
    Whether molecular states indeed exist in nature has been disputed for a long time. Several new resonances have been observed in the recent experiments and they seem to be of exotic structures and some of them have been proposed to be molecular states. The very recent observation of Zb(10610)[(10608.4±2.0)Z_b(10610)[(10608.4\pm 2.0) MeV] and Zb(10650)[(10653.2±1.5)Z_b(10650)[(10653.2\pm 1.5) MeV] encourages the interpretation of multi-quark states. In the Beter-Salpeter (BS) approach, we study the possibility if two heavy mesons can form a molecular state by exchanging light mesons. Our results indicate that two heavy mesons can form an isospin singlet (I=0) bound state but cannot form an isospin triplet (I=1) when the contribution of σ\sigma- exchange is reasonably small, i.e. as the coupling of σ\sigma with mesons gσg_{\sigma} takes the value given in previous literatures. Thus we conclude that the newly observed Zb(10610)Z_b(10610) should not be a molecular state, but a tetraquark state instead, at most, the fraction of the molecular state in the physical resonance Zb(10610)Z_b(10610) is tiny.Comment: 15 pages, 2 figures, an important reference added; Accepted by JHE

    Robust interface between flying and topological qubits

    Get PDF
    Hybrid architectures, consisting of conventional and topological qubits, have recently attracted much attention due to their capability in consolidating the robustness of topological qubits and the universality of conventional qubits. However, these two kinds of qubits are normally constructed in significantly different energy scales, and thus this energy mismatch is a major obstacle for their coupling that supports the exchange of quantum information between them. Here, we propose a microwave photonic quantum bus for a direct strong coupling between the topological and conventional qubits, in which the energy mismatch is compensated by the external driving field via the fractional ac Josephson effect. In the framework of tight-binding simulation and perturbation theory, we show that the energy splitting of the topological qubits in a finite length nanowire is still robust against local perturbations, which is ensured not only by topology, but also by the particle-hole symmetry. Therefore, the present scheme realizes a robust interface between the flying and topological qubits. Finally, we demonstrate that this quantum bus can also be used to generate multipartitie entangled states with the topological qubits.Comment: Accepted for publication in Scientific Report
    corecore