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Quantum computation in a decoherence-free subspace with superconducting devices

Z.-Y. Xue∗,1 S.L. Zhu,1, 2 and Z.D. Wang1

1Department of Physics and Center of Theoretical and Computational Physics,
The University of Hong Kong, Pokfulam Road, Hong Kong, China
2Laboratory of Quantum Information Technology, ICMP and SPTE,

South China Normal University, Guangzhou 510006, China

We propose a scheme to implement quantum computation in decoherence-free subspace with
superconducting devices inside a cavity by unconventional geometric manipulation. Universal single-
qubit gates in encoded qubit can be achieved with cavity assisted interaction. A measurement-
based two-qubit Controlled-Not gate is produced with parity measurements assisted by an auxiliary
superconducting device and followed by prescribed single-qubit gates. The measurement of currents
on two parallel devices can realize a projective measurement, which is equivalent to the parity
measurement on the involved devices.

PACS numbers: 03.67.Lx Quantum computation architectures and implementations - 42.50.Dv Quantum
state engineering and measurements - 85.25.Cp Josephson devices

Physical implementation of quantum computers relies
on coherent and accurate evolution to achieve quantum
logical gates. Recently, superconducting devices have at-
tracted significant interest for the hardware implemen-
tation of quantum computer because of their potential
scalability [1]. In addition, the cavity assisted interac-
tion has been experimentally illustrated to have several
practical advantages [2]. But, decoherence and system-
atic errors always occur in real quantum systems and
therefore stand in the way of physical implementation.
Decoherence may quickly destroy the information stored
in a quantum system. Indeed, it is technically difficult
for a single qubit survives for long on its own. But by
teaming up, a group of qubits can work together, form-
ing decoherence-free subspace (DFS) [3], to eliminate the
influence of their environment, and thus keeping their in-
tegrity. For superconducting devices, the short dephasing
time poses one of main challenges in coherent controls,
and thus it is significant to figure out methods of im-
provement. To manipulate the quantum state, one will
also inevitably encounter systematic errors. Fortunately,
geometric manipulation of quantum information could
result in quantum gates that are robust against stochas-
tic control errors [4]. Combination of the resilience of
the DFS approach against the environment-induced de-
coherence and the operational robustness of geometric
manipulation was also proposed with trapped ions [5, 6]
and by engineering the environment [7].

In this paper, we work out a feasible scheme to imple-
ment quantum computation based on DFS encoding with
an extended unconventional geometric scenario [6, 8–10].
We illustrate our idea by incorporating the supercon-
ducting devices inside a cavity. Universal single-qubit
gates in an encoded qubit [11] can be achieved with the
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help of cavity assisted interaction. In particular, the
realization of superconducting parity measurements on
two devices, together with single-device measurements
and single-qubit gates, is able to generate a two-qubit
Controlled-Not (CNOT) gate [12]. In this sense, this
scheme is the measurement-based quantum computation.
The easy combination of individual addressing and selec-
tive interaction with the many-device setup proposed in
the system presents a distinct merit for physical imple-
mentation.

A device for engineering the wanted interaction is
shown in Fig. 1. It consists of two superconducting
quantum interference devices (SQUIDs) with a common
superconducting charge box that has n excess Cooper-
pair charges. Each SQUID is formed by two small iden-
tical Josephson junctions (JJs) with the capacitance CJ

and Josephson coupling energy EJ , pierced by an ex-
ternal magnetic flux Φk. A control gate voltage Vg is
connected to the system via a gate capacitor Cg. Jl

with l ∈ {1, 2, 3, 4} denotes the lth JJ. The gauge-
invariant phase difference ϕl of Jl is determined from
the flux quantization for the three independent loops,
i.e., ϕk − ϕk+1 = 2πΦk/φ0 ≡ 2φk with k ∈ {1, 2, 3} and
φ0 = h/2e being the flux quantum. Since we here fo-
cus on the charge regime, a convenient basis we choose
is formed by the charge states, parameterized by the
number of Cooper pairs n on the box with its conju-
gate ϕ =

∑
l ϕl/4. At temperatures much lower than the

charging energy and restricting the gate charge to the
range of n̄ ∈ [0, 1], only a pair of adjacent charge states
{|0〉, |1〉} on the island are relevant. Setting φ1 = φ3 = 0,
the device Hamiltonian reduces to [1]

Hs = −Eceσz − EΦσx, (1)

where EΦ = 2EJ cos φ2 and Ece = 2Ec(1−2n̄) with Ec =
e2/2(Cg+4CJ) the charging energy and n̄ = CgVg/2e the
induced charge controlled by the gate voltage Vg.
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FIG. 1: Schematic illustration of the superconducting device
as the effective spin. Device made of two SQUIDs with a com-
mon superconducting charge box. This more flexible design
will introduce more control variables of the effective spin.

To produce the wanted interaction among devices,
they are placed in a cavity, being parallel to the plane
perpendicular to the magnetic component of the cavity
mode, so that the cavity mode contributes an additional
component to the total magnetic flux as ϕt − ϕt+1 =
2φt + gt(a + a†) ≡ 2φ̃t, with t ∈ {1, 2, 3} and a (a†) as
the creation (annihilation) operator for the cavity mode.
Devices are also placed at the antinodes of the cavity
mode and the size of the device is negligible in compari-
son with the cavity mode wave length, so that the device-
cavity interaction constants gt of different devices can be
treated as the same one. For simplicity, we consider only
the single-mode standing wave cavity scenario, then the
Hamiltonian (1) for a superconducting device in a cavity
becomes

Hc = −Eceσz − EJ

4∑

l=1

cos ϕl

= −Eceσz − 2EJ

[
cos φ̃1 cos

(
ϕ1 + ϕ2

2

)

+cos φ̃3 cos
(

ϕ3 + ϕ4

2

)]

= −Eceσz − EJ

{ (
cos φ̃1 + cos φ̃3

)

×
[

cos
(

ϕ1 + ϕ2

2

)
+ cos

(
ϕ3 + ϕ4

2

)]

+
(
cos φ̃1 − cos φ̃3

)

×
[

cos
(

ϕ1 + ϕ2

2

)
− cos

(
ϕ3 + ϕ4

2

)]}

= −Eceσz − 2EJ

[(
cos φ̃1 + cos φ̃3

)
cos ϕ cos θ

+
(
cos φ̃1 − cos φ̃3

)
sinϕ sin θ

]
, (2)

where θ = (ϕ1 + ϕ2 − ϕ3 − ϕ4)/4 = (φ1 + 2φ2 + φ3)/2 +
(g1+2g2+g3)(a+a†)/4 with φ1 and φ3 being dc magnetic

fluxes. Defining g = (g1+2g2+g3)/4 and set φ1 = φ3 = 0,
then θ = φ2 + g(a + a†). Up to the first order of g, i.e.,
in Lamb-Dicke limit, Hamiltonian (2) becomes

Hc = −Eceσz − 4EJ cos ϕ cos θ

' Hs + 2gEJ sinφ2(a + a†)σx. (3)

We can see that the interaction can be switched off by
modulating the external magnetic field as Φ2 = kφ0 with
k an integer. In other words, the qubit and the cavity
evolve independently in this case. The external flux is
merely used to separately address the qubit rotations,
while the evolution of the qubit is governed by Hamilto-
nian (1) with the coefficient EΦ being replaced by 2EJ .

In Ref. [13], it was assumed that the inter-SQUID
loop (enclosed by the flux Φ2 in Fig. 1) is much larger
than other two SQUID loops (enclosed by the fluxes Φ1

or Φ3), and thus neglected the cavity mediated interac-
tion in those loops. This would require a larger device
size, and may make it more sensitive to noises. Here, we
briefly elaborate that the wanted interactions among se-
lected devices may also be induced without the loop size
restriction imposed in Ref. [13]. If N devices are located
within a single-mode cavity, to a good approximation, the
whole system may be considered as N two-level systems
coupled to a quantum harmonic oscillator [14]. Assum-
ing the devices to work in their degeneracy points, the
cavity-device interaction is given by

Hint = −2EJ

N∑

j=1

[(
cos φ̃j

1 + cos φ̃j
3

)
cos ϕj cos θj

+
(
cos φ̃j

1 − cos φ̃j
3

)
sinϕj sin θj

]
, (4)

where we have assumed Ej
J = EJ for simplicity. Assum-

ing gj
t = g, up to the first order of g, Hamiltonian (4)

becomes

Hint ' −2EJ

N∑

j=1

{
cos ϕj

{ (
cos φj

1 + cos φj
3

)

×
[
cos φj

2 + g sinφj
2(a + a†)

]

+g
(
sinφj

1 + sinφj
3

)
(a + a†) cos φj

2

}

+sin ϕj

{ (
cos φj

1 − cos φj
3

)

×
[
sinφj

2 + g cos φj
2(a + a†)

]

+g
(
sinφj

1 − sinφj
3

)
(a + a†) sin φj

2

}}
. (5)

Setting φ2 = ωt for all the selected devices and in the
interaction picture with respect to

H0 = ~ωc(a†a +
1
2
), (6)
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Hamiltonian (5) becomes

Hint ' gEJ

2

N∑

j=1

{
σx

j

[
i
(
cos φj

1 + cos φj
3

)
(aeiδt − a†e−iδt)

−
(
sinφj

1 + sinφj
3

)
(aeiδt + a†e−iδt)

]

−σy
j

[(
cos φj

1 − cos φj
3

)
(aeiδt + a†e−iδt)

−i
(
sinφj

1 − sinφj
3

)
(aeiδt − a†e−iδt)

]}
(7)

under the rotating-wave approximation, i.e., 0 < δ =
ω − ωc ¿ ωc. If φ1 = φ3 = kπ, the cavity mediated
interaction of Eq. (7) reduce to

Hx
int = i~β

(
a†e−iδt − aeiδt

)
Jx, (8)

where β = gEJ/~ and Jx,y,z =
∑N

j=1 σx,y,z
j . In the case

of large detuning (δ À β) or periodical evolution (δt =
2kπ), the corresponding effective Hamiltonian is given by
[13–16]

Hx = ~χJ2
x , (9)

where χ = β2/δ. If φ3 = φ1 − π = kπ, then the reduced
effective Hamiltonian is

Hy = ~χJ2
y . (10)

Note that the Hamiltonian (9) and (10) are independent
on the number of devices, and can also be obtained by
periodical dynamic evolution [14]. This cavity assisted
collision type of Hamiltonian was first proposed for two
atoms in cavity QED [16] with experimental verification
in [17].

We now elucidate how to achieve universal single-qubit
rotation [6]. We employ the pair-bit code by which the
logical qubit is encoded in a subspace {|0〉, |1〉} as

|0〉i = |0〉i1 ⊗ |1〉i2 , |1〉i = |1〉i1 ⊗ |0〉i2 , (11)

where i = 1, · · · , N/2 indexes qubits of an array of N
devices. Such an encoding is the well-known DFS [3]
against the collective dephasing of the system-bath in-
teraction. Let us denote X, Y , and Z as the three Pauli
matrices of the encoded qubit subspace. The evolution
operator for two selected devices interact with Hamilto-
nian in Eq. (9) is

Ux(γ) = exp
[−2iγ

(
1 + σx

i1σ
x
i2

)]

∼ exp
(−2iγσx

i1σ
x
i2

)
= exp (−2iγX) , (12)

where γ = χt. If we set φ1 = φ3 = kπ in device i1 and
φ3 = φ1−π = kπ in device i2, then the reduced evolution
operator for the two selected devices is

Uy(γ) ∼ exp
(−2iγσx

i1σ
y
i2

)
= exp (−2iγY ) . (13)

H
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FIG. 2: Measurement-based CNOT gate for two encoded
qubits. Capital letters ”C” and ”T” represent the control and
target qubit, respectively. ”A” represents an auxiliary device,
it can witness the qubit state via parity measurements ”P”,
which operate on two devices, one from ”A” and the other
from ”C” or ”T”. ”H” is the Hadamard gate. The measure-
ment ”M” results of ”A” in the {|0〉, |1〉} basis together with
the outcomes of the two parity measurements ”P” determine
which operation one has to apply on the ”C” and ”T” qubit
in order to complete the CNOT gate. The arrowed line in
the bottom represents the sequence of the process. The point
”0”, ”1”, ”2”, and ”3” stand for the initial system state, the
system states after measurements ”P1”, before and after ”M”,
respectively.

Certainly, (12) and (13) are non-commutable, construct-
ing the well-known universal single-qubit rotations.

We next proceed to implement a CNOT gate between
two encoded qubits with the help of an auxiliary device.
Here we propose a measurement-based CNOT gate op-
eration [12]. The relevant operations are single-qubit ro-
tations, single-device rotations/measurements, and effec-
tive parity measurements for two devices. The circuit
for the CNOT gate is depicted in Fig. 2. The auxiliary
device is initially prepared in its ground state |0〉A. The
parity measurement is operated in {|0〉, |1〉} basis. The
devices can be treated as effective spin 1/2 systems, and
the parity here represents for the total spin for the two
involved devices, which can be used to witness the states
of the involved spins [12]. After a Hadamard gate on the
auxiliary device, the first parity measurement P1 in Fig.
2 is implemented on the auxiliary device and the first
device from ”C” qubit. After Hadamard rotation of the
auxiliary devices and the target qubit, the second parity
measurement P2 is implemented on the auxiliary device
and the first device in the ”T” qubit. Then we rotate
back the auxiliary device and the target qubit state by
Hadamard gate. The last step is the measurement of the
auxiliary device in the {|0〉, |1〉} basis. The two parity
measurement results, together with the measurement re-
sult of the auxiliary device determine which single-qubit
gates to be operated on the control and target qubits
to generate a CNOT gate. The relationship between the
measurement results and the gates to be operated is sum-
marized in the table I. After completing the required
gates on the corresponding qubits, it is straightforward
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TABLE I: Table of the correspondence between the measure-
ment results and the gates operated on the control and target
qubits. ”0” and ”1” represent odd and even parity, respec-
tively.

”P1” ”P2” result of ”M” gate on ”C” gate on ”T”

1 1 |0〉A I I

1 1 |1〉A I X

1 0 |0〉A Z I

1 0 |1〉A Z X

0 1 |0〉A I X

0 1 |1〉A I I

0 0 |0〉A Z X

0 0 |1〉A Z I

to check that the process is a CNOT gate operation be-
tween the two qubits.

To verify that a CNOT gate is implemented after the
circuit plotted in Fig. 2, we consider that the two qubits
are initially in the states

|ψ〉C = (α|0〉+ ζ|1〉)C , (14a)

|ψ〉T = (ξ|0〉+ τ |1〉)T , (14b)

where |α|2 + |ζ|2 = 1 and |ξ|2 + |τ |2 = 1. The initial state
of the system at point 0 in Fig. 2 is given by

|ψ〉C ⊗ |0〉A ⊗ |ψ〉T . (15)

The circuit in Fig. 2, together with prescribed single-
qubit gates, is to ensure the final state to be

α|0〉C (ξ|0〉+ τ |1〉)T + ζ|1〉C (ξ|1〉+ τ |0〉)T , (16)

up to a global phase. For the sake of definitiveness, let
us single out one of the possibilities as an example. If
P1 = 0, the system state at point 1 reduces to

(α|0〉C |1〉A + ζ|1〉C |0〉A)⊗ |ψ〉T . (17)

If P2 = 1, the system state at point 2 is

1
2
{α|0〉C[(τ + ξ)(|0〉+ |1〉)T ⊗ |ψ〉A

+(τ − ξ)(|0〉 − |1〉)T ⊗ ¯|ψ〉A]
+ζ|1〉C[(ξ + τ)(|0〉+ |1〉)T ⊗ |ψ〉A

+(ξ − τ)(|0〉 − |1〉)T ⊗ ¯|ψ〉A]}. (18)

where |ψ〉A = (|0〉+|1〉)A/
√

2 and ¯|ψ〉A = (|0〉−|1〉)A/
√

2.
If the measurement result of the auxiliary devices is |0〉A,
the system state at point 3 is

α|0〉C(τ |0〉+ ξ|1)T + ζ|1〉C(ξ|0〉+ τ |1〉)T, (19)

which relates to the targeted final state (16) up to a X-
gate on the target qubit (c.f. the table). Thus a nontriv-
ial two-qubit CNOT gate is achieved.

FIG. 3: A Josephson-Junction circuit with one large junction
”0” and two parallel charge devices. One of the devices is from
the encoded qubit and the other is its auxiliary device. Each
device consists of two SQUID loops. The small arrow near
each JJ denotes the direction of its phase drop. Φe is the dc
external magnetic flux of the loop consists of junction ”0” and
the first device, which are related to the inter-SQUID mag-
netic flux of the devices, and the cavity mediated interaction
can be neglected in this situation. The external magnetic flux
of the SQUID loops in both devices are set to be zero during
the parity measurement.

At this stage, we elaborate how to implement a parity
meter for superconducting devices [18–20]. Let us con-
sider a circuit with one large junction denoted by ”0” and
two parallel devices (c and t) made up of smaller JJs, as
shown in Fig. 3 [19]. Under an external bias current Ib,
the current flowing through the large junction may be
written as

I0 = |Ib + Id| =
∣∣∣Ib + 〈ψ1,2|Î|ψ1,2〉

∣∣∣ (20)

where Î is the current operator for the two parallel de-
vices and Id is the sum of their expectation values. If
I0 > Ic with Ic as the critical current of the large junc-
tion, the large junction is switched from the supercon-
ducting state (with zero voltage across the junction) to
the normal state (with a nonzero voltage V ). As Î is
related to the device’s state, by monitoring the voltage
across the junction one can determine which type of state
those JJ devices have been projected to [18], and thus
realize a quantum-state selector [19, 20] (see below for
details). If Ib is set to be significantly smaller than Ic

and given the fact that Id ¿ Ib, then I0 will always be
less than Ic, i.e., no measurement is in effect. Therefore,
by a proper choice of the bias current Ib, we are able to
realize effectively switching on/off of the process.

It is notable that the device in Fig. 3 is the same
as that of in Fig. 1. In Fig. 3, we have chosen the
magnetic flux of SQUID loops, Φ1 and Φ3 in Fig. 1, to
be zero in each device, which simplifies our calculation
[19]. With such choice, the constrain of the inter-SQUID
loop for each device is ϕ2−ϕ3 = ϕ1−ϕ4 = 2πΦe/φ0−γ,
i.e., Φ2 ≡ 2πΦe/φ0 − γ for both devices, where γ is the
gauge phase drop of the large JJ. For the two-device case,
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setting Φe = φ0/2, the total current operator of both
parallel devices is given by [19]

Î = I1σ
1
x + I2σ

2
x, (21)

which is state-dependent with I1(2) being the critical cur-
rent of the SQUID in device 1(2). To implement the par-
ity measurement, we choose Ib = Ic − (I1 + I2)/2 [20],
i.e.,

I0 = Ic − (I1 + I2)/2 + 〈ψ1,2|Î|ψ1,2〉. (22)

Denote states |±〉 as the eigenstates of σx with eigenval-
ues ±1, i.e., σx|±〉 = ±|±〉. If ψ1,2 = |+〉1|+〉2, then

I0 = Ic +
I1 + I2

2
> Ic, (23)

therefore the large junction is switched from the super-
conducting state to the normal state with a nonzero volt-
age V1. For the other three cases ψ1,2 ∈ {|+〉1|−〉2,
|−〉1|+〉2, |−〉1|−〉2}, it is direct to check I0 < Ic. In
other words, if V1 6= 0, the projective measurement

P ′1 = |+〉1|+〉2,2〈+|1〈+| (24)

is implemented on the two involved devices. For V1 =
0, we may reverse both the external field Φe and bias
current Ib to their opposite directions, and monitor the
voltage again. If V2 6= 0, then

P ′2 = |−〉1|−〉2,2〈−|1〈−| (25)

is implemented. If V2 = 0 again, this corresponds to the
measurement

P ′3 = |+〉1|−〉2,2〈+|1〈−|+ |−〉1|+〉2,2〈−|1〈+|. (26)

It is obvious that P ′1 and P ′2 are even parity, while P ′3 is
odd parity. This constructs a superconducting parity me-
ter in the {|±〉} basis. Rotation of the device state before
and after the measurement results in the parity meter in
the {|0〉, |1〉} basis, which is adopted in our implementa-
tion of the CNOT gate. It is also needed to measure the
auxiliary devices in the present implementation of the
CNOT gate, which can also be achieved with a minor
modification of the setup [19].

We now briefly address the experimental feasibility of
our scheme. Individual addressability is normally a pre-
requisite in any quantum manipulation. Here, the size
of the device setup is macroscopic, thus individual ad-
dressability is taken as granted. Meanwhile, local con-
trollability of single qubit is obtained by conventional
methods [1]. The cavity-device coupling and decoupling
can be controlled by the external magnetic flux, which
can be effectively controlled. This also ensures the se-
lective cavity-device interaction. In addition, the imple-
mentation set the devices working in their degeneracy

points, where they possess long coherence time and min-
imal charge noises. Typical gate operation time is t ∼ 10
ns [14], which is much shorter than both the lifetime of
qubit and cavity decay time (at least on the order of µs
[1, 16]). Imperfect control of time results in the fluctua-
tion of periodical condition while cavity decay forbids the
cavity state back to the original point in phase space, this
contribute to the decoherence in current implementation.
However, detailed examinations [21–23] show that these
will only result a little bit infidelity of the gate operation.

In summary, we have proposed a feasible scheme to
implement quantum computation in the DFS with su-
perconducting devices inside a cavity. The wanted in-
teraction between selective devices can be implemented.
Universal single-qubit gates can be achieved with cav-
ity assisted interaction. A measurement-based two-qubit
CNOT gate is produced with parity measurements as-
sisted by an auxiliary device and followed by prescribed
single-qubit gates. The easy combination of individual
addressing and selective interaction with the many-device
setup proposed in the system presents a distinct merit for
our physical implementation.

This work was supported by the RGC of Hong Kong
under Grants Nos. HKU7045/05P and HKU7049/07P
plus HKU7044/08P, the NSFC under Grants No.
10429401 and No. 10674049, and the State Key Pro-
gram for Basic Research of China (No. 2006CB921800
and No. 2007CB925204).
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