25,493 research outputs found

    A robust relativistic quantum two-level system with edge-dependent currents and spin polarization

    Get PDF
    This work was supported by AFOSR under Grant No. FA9550-15-1-0151. LH was supported by NSFC under Grant No. 11422541.Peer reviewedPostprin

    Superpersistent currents and whispering gallery modes in relativistic quantum chaotic systems

    Get PDF
    Acknowledgements This work was supported by AFOSR under Grant No. FA9550-12-1-0095 and by ONR under Grant No. N00014-08-1-0627. LH was supported by the NSF of China under Grant No. 11422541Peer reviewedPublisher PD

    Scars in Dirac fermion systems: the influence of an Aharonov--Bohm flux

    Full text link
    Time-reversal (T\mathcal{T}-) symmetry is fundamental to many physical processes. Typically, T\mathcal{T}-breaking for microscopic processes requires the presence of magnetic field. However, for 2D massless Dirac billiards, T\mathcal{T}-symmetry is broken automatically by the mass confinement, leading to chiral quantum scars. In this paper, we investigate the mechanism of T\mathcal{T}-breaking by analyzing the local current of the scarring eigenstates and their magnetic response to an Aharonov--Bohm flux. Our results unveil the complete understanding of the subtle T\mathcal{T}-breaking phenomena from both the semiclassical formula of chiral scars and the microscopic current and spin reflection at the boundaries, leading to a controlling scheme to change the chirality of the relativistic quantum scars. Our findings not only have significant implications on the transport behavior and spin textures of the relativistic pseudoparticles, but also add basic knowledge to relativistic quantum chaos.Comment: 37 pages, 11 figure

    Emergence of grouping in multi-resource minority game dynamics

    Get PDF
    TheMinority Game (MG) has become a paradigm to probe complex social and economical phenomena where adaptive agents compete for a limited resource, and it finds applications in statistical and nonlinear physics as well. In the traditional MG model, agents are assumed to have access to global information about the past history of the underlying system, and they react by choosing one of the two available options associated with a single resource. Complex systems arising in a modern society, however, can possess many resources so that the number of available strategies/resources can be multiple. We propose a class of models to investigate MG dynamics with multiple strategies. In particular, in such a system, at any time an agent can either choose a minority strategy (say with probability p) based on available local information or simply choose a strategy randomly (with probability 1 - p). The parameter p thus defines the minority-preference probability, which is key to the dynamics of the underlying system. A striking finding is the emergence of strategy-grouping states where a particular number of agents choose a particular subset of strategies. We develop an analytic theory based on the mean-field framework to understand the "bifurcation" to the grouping states and their evolution. The grouping phenomenon has also been revealed in a real-world example of the subsystem of 27 stocks in the Shanghai Stock Market's Steel Plate. Our work demonstrates that complex systems following the MG rules can spontaneously self-organize themselves into certain divided states, and our model represents a basic mathematical framework to address this kind of phenomena in social, economical, and even political systems.Comment: 10 pages,8 figures and a real word exampl

    Universal flux-fluctuation law in small systems

    Get PDF
    We thank Dr. DeMenezes for providing the microchip data. This work was partially supported by the NSF of China under Grant Nos. 11135001, 11275003. Y.C.L. was supported by ARO under Grant No. W911NF-14-1-0504.Peer reviewedPublisher PD
    corecore