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Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are
known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos.
But would this still be the case for Dirac fermions? Addressing this question is of significant value due to the
tremendous recent interest in two-dimensional Dirac materials. We investigate relativistic quantum AB
rings threaded by a magnetic flux and find that PCs are extremely robust. Even for highly asymmetric rings
that host fully developed classical chaos, the amplitudes of PCs are of the same order of magnitude as those
for integrable rings, henceforth the term superpersistent currents (SPCs). A striking finding is that the SPCs
can be attributed to a robust type of relativistic quantum states, i.e., Dirac whispering gallery modes
(WGMs) that carry large angular momenta and travel along the boundaries. We propose an experimental
scheme using topological insulators to observe and characterize Dirac WGMs and SPCs, and speculate that
these features can potentially be the base for a new class of relativistic qubit systems. Our discovery of WGMs
in relativistic quantum systems is remarkable because, although WGMs are common in photonic systems,
they are relatively rare in electronic systems.

A
remarkable phenomenon in the quantum world is persistent currents (PCs), permanent currents without
any external source1, which are generated by the Aharonov-Bohm (AB) effect2 in non-superconducting
systems. PCs have been observed experimentally in metallic3–7 and semiconductor8–10 rings in the meso-

scopic regime. Theoretical efforts have been focused on the effects of bulk disorders11–13, electron-electron
interactions14–16, spin-orbital interactions17,18, and electromagnetic radiation19,20 on PCs, typically studied in
the diffusive regime using idealized circular-symmetric rings and cylinders. Rapid advances in nanotechnology
have made it feasible to fabricate mesoscopic devices with mean free path larger than their sizes at sufficiently low
temperatures (the ballistic transport regime)21. The AB system can thus be modeled as a quantum ballistic billiard
in which the particles are scattered at the boundaries of the domain. As a result, the boundary shape becomes
highly relevant. In experiments, uncontrollable boundary imperfections are inevitable22,23 even when there are no
bulk disorders. It is thus of interest to study the effects of boundaries, e.g., those that generate chaos in the classical
limit, on PCs. In general, an asymmetric boundary destroys angular momentum conservation and introduces
irregular scattering. Theoretical24–29 and experimental22 studies have shown that, similar to the effects of bulk
disorder, symmetry breaking of the boundary can result in opening of gaps at the degeneracy points of the energy
levels, leading to level repulsion, a typical manifestation of classical chaos. Energy gap opening can diminish AB
oscillations through pinning of the corresponding states, leading to vanishing PCs. Since fully chaotic domains
are associated with a strong degree of symmetry breaking, PCs are not expected to arise30,31. In nonrelativistic
quantum systems governed by the Schrödinger equation, PCs are thus fragile.

In this paper, we address the question of whether, in relativistic quantum systems, PCs can arise and sustain in
the presence of symmetry-breaking perturbations. Besides the importance of this question to fundamental
physics, our work was motivated by the tremendous recent research on two-dimensional Dirac materials32 such
as graphene33–39, topological insulators40, molybdenum disulfide (MoS2)41,42, HITP [Ni3(HITP)2]43, and topo-
logical Dirac semimetals44,45. The physics of these materials is governed by the Dirac equation. This is thus interest
in investigating relativistic PCs in Dirac fermion systems46–57. Existing theoretical works on relativistic PCs,
however, assumed idealized circular-symmetric rings in the ballistic limit. Whether AB oscillations and
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consequently relativistic PCs can exist in asymmetric rings that
exhibit chaos in the classical limit is a fundamental question. Our
finding is that, even in the presence of significant boundary deforma-
tions so that the classical dynamics becomes fully chaotic, robust PCs
can occur in relativistic quantum, Dirac fermion systems, henceforth
the term superpersistent currents (SPCs). A more striking finding is
that SPCs are generated by localized states at the domain boundaries,
which are effectively chaotic Dirac whispering gallery modes
(WGMs) that carry larger angular momenta. WhileWGMs are com-
mon in photonic systems58–61, its emergence in electronic systems62,
especially in relativistic quantum systems, is rare and surprising. We
develop a physical understanding of the counterintuitive phenom-
enon of SPCs by analytically exploiting the properties of the spinor
wavefunctions in an idealized relativistic quantum system.

The significance of our results lies in the perspective of observing
SPCs in the presence of strong random scattering, implying that they
may occur in systems of size beyond the mesoscopic limit. This can
potentially be a relativistic quantum phenomenon occurring at rela-
tively large scales. There can be significant applications of SPCs in
quantum information processing, for which we speculate on a
scheme of Dirac WGM-based qubit. We note that, previous experi-
mental studies of AB oscillations in graphene63 and topological insu-
lators64,65 make it possible to experimentally test the phenomena of
DiracWGMs and SPCs that we predict in this paper. To motivate
experimental verification, we propose a feasible scheme using three-
dimensional topological insulators.

Theoretical model of the relativistic AB system. Consider a single
massless spin-half particle of charge 2q confined by hard walls in a
domain B with a ring topology in the plane r 5 (x, y), as shown in
Fig. 1. Applying a single line of magnetic flux (AB flux) W at its origin
and utilizing an infinite mass term outside the domain to model the
confinement, we obtain the following Hamiltonian in the position
representation:

Ĥ~vŝ: {i�h=zqAð ÞzM rð Þŝz, ð1Þ

where v is the Fermi velocity, ŝ~ ŝx,ŝy
� �

and ŝz are the Pauli
matrices, and M 5 0 in the ring domain but M 5 ‘ otherwise (for
hard-wall confinement - used previously, e.g., in the study of
graphene rings66, graphene quantum dots67, and topological
insulator quantum dots68). The vector potential A(r) can be chosen
as any vector field satisfying =|A rð Þ~êaW0d rð Þ, where ê is the unit
vector perpendicular to B and a ; W/W0 is the dimensionless
quantum flux parameter, with W0~2p�h=q being the flux quantum.

The Hamiltonian Ĥ acting on the two-component spinor wave-
function y(r) 5 [y1, y2]T has eigenvalue E:

{i�hvŝ:DzM rð Þŝz½ �y rð Þ~Ey rð Þ, ð2Þ

where D 5 = 1 ia is a compact notation for the covariant derivative
with a ; 2pA/W0.

In Eq. (2), Msz represents the mass potential that takes into
account the Klein tunneling effect, which can confine massless
Dirac fermions in a finite domain. Such a confinement itself will
break the time-reversal symmetry (T-breaking) in absence of any
external magnetic field. However, the T-breaking due to mass poten-
tial confinement is different from that due to magnetic field in a
classical picture in which no Lorenz force acts on the particle so that
the geodesic motions are still characterized by straight lines within
the confined domain. In relativistic quantum theory of electrons,
magnetic field is introduced through the form of minimal coupling
in the corresponding vector potential that is different from the mass
term. As a result, in the conventional (3 1 1)-dimensional spacetime,
the mass itself cannot break the time-reversal symmetry. However, in
(2 1 1)-dimensional systems studied in this paper (as for two-
dimensional Dirac materials such as graphene and topological insu-
lators), the mass term will induce chiral anomaly and hence T-break-
ing. Thus the T-breaking caused by mass confinement has different
features from that due to the magnetic field69,70.

To better understand the physical origin of the mass confinement
term Msz, we consider a single particle in absence of magnetic field
and compare the following two situations: (a) the particle is in a Dirac
ring with hard-wall confinement of mass potential and (b) the par-
ticle is in a Schrödinger ring with the conventional, electrical poten-
tial (hard-wall) confinement. We assume that the classical orbits are
identical for both cases. Apparently, in case (a), the T-breaking is
intrinsic but there is no T-breaking in case (b). In fact, as indicated by
Sir Berry71, the semiclassical origin of T-breaking induced by mass
confinement is quite intriguing. One aim of our work is to uncover
new and interesting phenomena caused by the mass confinement
Msz in (2 1 1)-dimensional Dirac systems. As we argue and dem-
onstrate later, this type of confinement can be experimentally rea-
lized by exploiting the surface states of three-dimensional topological
insulators, where the mass term in the Dirac equation is originated
from a Zeeman term induced by local exchange coupling.

Some basic properties of Eq. (2) are the following. Firstly, the
confinement condition of imposing infinite mass outside B naturally
takes into account the Klein paradox for relativistic quantum part-
icles and thus guarantees that our study is conducted in the single-
particle framework, which is relevant to the intrinsic physics of a
single Dirac cone in graphene or topological insulator. Secondly,
both reduced spatial dimension together with mass confinement
and applied magnetic flux can break the time-reversal symmetry of
Ĥ: T̂,Ĥ
� �

=0 if M ? 0 or a ? 0, where T̂~isyK̂ and K̂ denotes
complex conjugate. Thirdly, for M 5 0 and A 5 0 in Eq. (2) (i.e. free
massless particle), there exist plane wave solutions whose positive
energy part has the following form:

yk rð Þ~ 1ffiffiffi
2
p

exp {i h
2

� �
exp i h

2

� �
 !

exp ik:rð Þ, ð3Þ

where k is a wave vector that makes an angle h with the x axis.
Fourthly, by using the Dirac equation iLty~Ĥy and defining r 5

y{y as the local probability density, we have the following continuity
equation Ltrz=: y{vŝy

� �
~0. It is therefore natural to define vŝ as

the local current operator, so the local current density in state y(r) is
given by j rð Þ:vy{y~2v Re y�1y2

� �
,Im y�1y2

� �� �
.

To obtain solutions of Eq. (2), a proper treatment of the boundary
condition is necessary. As done in previous works, we use the infinite

Figure 1 | Illustration of a chaotic ring domain with boundary
parameterized by the arc length s. For motion of massless Dirac fermion

inside the domain, the boundary condition is of the zero-flux type, i.e., no

outward current at any point s: j ? n 5 0.

www.nature.com/scientificreports
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mass (also called Berry-Mondragon71 or chiralbag72–74) boundary
condition

y2

y1

����
LB

~sgn Mð Þi exp ih sð Þ½ �, ð4Þ

where sgn(?) stands for the signum function and h(s) denotes the
angle made by the outward unit normal n with the x axis at an
arbitrary boundary point s, as shown in Fig. 1. Substituting Eq. (4)
into the current density formula, one can show that the boundary
current j(s) 5 2vjy1j2(2 sin h, cos h) is polarized along the boundary:
clockwise and counterclockwise for the inner and outer edges, respect-
ively. It is remarkable that this polarized property is independent of
the shape of the confinement potential M(r) and is thus topologically
protected from irregular boundary scatterings, even though the mag-
nitude of the edge current can be affected.

An analysis of the general properties of the a (magnetic flux)
dependent relativistic quantum spectrum {Ej(a)}, as determined by
Eq. (2) under the boundary condition Eq. (4), reveals that the first
‘‘Brillouin zone’’ is given by 21/2 # a # 1/2 (Supplementary Note 1).
To calculate a large number of relativistic eigenvalues and eigenstates
with high accuracy, we use the conformal-mapping method75–77

(Supplementary Note 2).

Whispering gallery modes and superpersistent currents. To demons-
trate our findings, we deform a circular ring domain j 5 0.5 # r # 1,
using the mapping w(z) 5 h[z 1 0.05az2 1 0.18a exp(iv)z5], where
v 5 p/2, a g [0, 1] is the deformation parameter that controls the
classical dynamics. Specifically, when increasing a from zero to unity
the deformed ring will undergo a transition from being regular to
mixed and finally to being fully chaotic. The normalization coefficient

h~1

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

a2

200
1zj2� �

z
81a2

500
1zj2zj4zj6zj8� �r

guaran-

tees that the domain area is invariant for arbitrary values of the
deformation parameters {a, v, j}. Four representative domains are
shown in the top row in Fig. 2 where, classically, the left most domain

is integrable, the right most domain is fully chaotic, and the two
middle domains have mixed phase space. The middle and bottom
rows of Fig. 2 show the lowest 10 energy levels as functions of
the quantum flux parameter a, i.e., energy-flux dispersions, for
Schrödinger and Dirac particles, respectively. We see that Ej(a) 5

Ej(2a) holds for the Schrödinger particle, but for the Dirac fermion,
the symmetry is broken: Ej(a) ? E(2a). However, for both
nonrelativistic and relativistic spectra, we have Ej(a) 5 Ej(a 1 1).
For the circular-symmetric ring (a 5 0), AB oscillations in the energy
levels have the period W0 (i.e., a 5 1) and there are level crossings.
Making the domain less symmetric by tuning up the value of the
deformation parameter a leads to classical mixed phase space (regular
and chaotic), and eventually to full chaos (a 5 1). We see that, for the
Schrödinger particle, emergence of a chaotic component in the
classical space leads to opening of energy gaps, generating level
repulsion and flattening the AB oscillations associated with the
corresponding energy levels. Surprisingly, for the Dirac fermion,
the AB oscillations are much more robust against asymmetric
deformations. In particular, for the fully chaotic case, AB
oscillations for the Schrödinger particle disappear almost entirely
while those for the Dirac fermion persist with amplitudes of the
same order of magnitudes as the integrable case.

We now present evidence of Dirac WGMs for the case of fully
chaotic AB ring domain. By examining the eigenstates, we note that,
for low energy levels, the Schrödinger particle is strongly localized
throughout the domain, as shown in Figs. 3(a–c), leading to a flat
energy-flux dispersion. However, the Dirac fermion typically travels
around the ring’s boundaries, forming relativistic WGMs that persist
under irregular boundary scattering due to chaos and are magnetic-
flux dependent, as shown in Fig. 3(d–f). Conventional wisdom for
Schrödinger particle stipulates that asymmetry in the domain geo-
metry can mix/couple well-defined angular momentum states, open-
ing energy gaps and leading to localization of lower states in the
entire domain region, so AB oscillations would vanish, as demon-
strated both theoretically and experimentally22,24. However, for Dirac
fermion, this picture breaks down - there are robust AB oscillations

Figure 2 | Top panels: domain shape with classical dynamics ranging from integrable (a 5 0; left most panel) and mixed (a 5 0.25 and 0.5; middle two

panels) to chaotic (a 5 1.0; right most panel). Middle panels: nonrelativistic AB oscillations (energy-flux dispersions). Bottom panels: relativistic

AB oscillations.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8963 | DOI: 10.1038/srep08963 3



even in the fully chaotic domain and the particle tends to execute
motions corresponding to WGMs.

The robust AB oscillations in chaotic Dirac rings lead to SPCs. The
total persistent current can be calculated at zero temperature
through1,66 I að Þ~{

X
j LEj

�
La

� �
, where the sum runs over all

occupied states with Ej . 0. Due to periodicity in the energy:
Ej(a) 5 Ej(a 1 1), the current is also periodic in a with the fun-
damental period a 5 1. Figure 4 shows, for the nonrelativistic (top
panels) and relativistic (bottom panels) cases, PCs resulted from the
lowest three states (including spin) in regular (left column) and cha-
otic (right column) rings. We see that, for classical integrable
dynamics, PC oscillations display a common sawtooth form.
However, at zero flux, PC is zero for the nonrelativistic case [Fig. 4
(a)], while it has a finite value for the relativistic case due to breaking of
the time-reversal symmetry. In the chaotic case, the oscillations
become smooth due to level repulsion in the corresponding energy-
flux dispersion pattern. As a result, PCs carried by the Schrödinger
particle practically vanish as compared with the integrable case but,
strikingly, the Dirac fermion still carries a persistent current with
amplitude of the same order of magnitude as that for the integrable
case - SPCs. Intuitively, SPCs carried by the Dirac fermion as an
‘‘exceptional’’ magnetic response are associated with the chaotic
Dirac WGMs exemplified in Fig. 3.

Origin of WGMs and SPCs. The origin of the ‘‘exceptional’’
magnetic response of the chaotic Dirac fermion can be understood

through the behavior of the current carried by the particle at the
boundary interface. We have developed an analytic understanding
to predict the occurrence of Dirac WGMs and, consequently, SPCs.
In particular, we consider the following problem: a plane wave
incident obliquely on a straight potential jump M(x, y) given by

M x,yð Þ~
0, xv0

V0, xw0,
,

	
ð5Þ

as shown in Fig. 5. Without loss of generality, we let the incident wave
yi be described by the wave vector k0 5 (k cos h0, k sin h0), the
reflected wave yr by k1 5 (k cos h1, k sin h1, and the transmitted
wave yt by u 5 (iq, K), where h1 5 p 2 h0 and K ; k sin h0. We focus
on the situation where the energy of the incident wave satisfies
E , V0, which corresponds to the total reflection case.

Referring to Fig. 5, we have that the wave in region I (x , 0) can be
written as

YI rð Þ~yi x,yð ÞzRyr x,yð Þ, ð6Þ

and the wave in region II is

YII rð Þ~Tyt x,yð Þ, ð7Þ

where the coefficients R and T are to be determined by matching the
waves at x 5 0. In the following, we treat the Schrödinger scalar wave
and Dirac spinor wave separately.

Figure 3 | Probability distribution of the 10th eigenstate for (a–c) nonrelativistic and (d–f) relativistic AB chaotic billiard for a 5 21/4, 0, 1/4,

respectively.

Figure 4 | Persistent current (PC) as a function of the quantum flux parameter a from five lowest states (including spin) for nonrelativistic (a,b) and
relativistic (c,d) cases. The domain is integrable for (a,c) and chaotic for (b,d).

www.nature.com/scientificreports
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Schrödinger scalar plane wave. For the nonrelativistic quantum case
as shown in Fig. 5(b), we have, in region I (x , 0),

YI
S~ eikx cos h0zRe{ikx cos h0
� �

eiky sin h0 , ð8Þ

and in region II (x . 0),

YII
S ~Te{qxeiKy, ð9Þ

where q and K are related to each other through

q~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m V0{Eð Þ

�h2 zK2

r
; E~

�h2k2

2m
, ð10Þ

with m denoting the mass of the particle. Matching the waves and
their derivatives at x 5 0, we obtain

R~
k cos h0{iq
k cos h0ziq

~e{2ib; T~
2k cos h0

k cos h0ziq
~2 cos be{ib, ð11Þ

where the parameter b is defined through

tan b~
q

k cos h0
; 0ƒbƒ

p

2
: ð12Þ

Given the wave function YS(r), the associated probability current
density is

J S rð Þ~ �h
2mi

Y{
S rð Þ=YS rð Þ{c:c:

h i
, ð13Þ

where c.c. denotes complex conjugate. We therefore obtain, in
region I,

J I
S

J I
S

� �
x~

�hk cos h0
m

1{ Rj j2
� �

~0;

J I
S

� �
y~

�hk
m

sin h0 2z2 cos 2kx cos h0z2bð Þ½ �;

(
ð14Þ

and in region II,

J II
S

J II
S

� �
x~0;

J II
S

� �
y~

�hK
m

Tj j2E{2qx~ �hk sin h0
m

4 cos2 be{2qx

(
: ð15Þ

In region I, the y component of the probability current is the sum of
two terms: (1) the term resulting from the sum of the currents
associated with the incident and reflected waves, and (2) the term
containing the factor cos(2kx cos h0 1 2b) that accounts for the
interference between the incident and reflected waves. In region II,
the probability current is also parallel to the y-axis, and it decays
exponentially as an evanescent wave. Note that ± JII

S

� �
y?0 as q R

‘ (i.e., V0 R ‘).

Planar Dirac spinor wave. The relativistic case is shown in Fig. 5(c).
We proceed in the same manner as for the nonrelativistic case.
Expressing the wave in terms of massless spinor planar waves that
are solutions of the Dirac equation, we have, in region I (x , 0),

YI
D~

1ffiffiffi
2
p e{1

2ih0

e
1
2ih0

 !
eikx cos h0z R

e{1
2ih1

e
1
2ih1

 !
e{ikx cos h0

( )
eiky sin h0 ,
ð16Þ

and in region II (x . 0),

Figure 5 | Incident, reflected and transmitted local plane waves at a potential jump.

www.nature.com/scientificreports
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YII
D~

Tffiffiffi
2
p

{il1

l2


 �
e{qxeiKy, ð17Þ

where

l1~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0zEð Þ q{Kð Þ

V0q{EK

s
; l2~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0{Eð Þ qzKð Þ

V0q{EK

s
, ð18Þ

and

q~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

0 {E2

�h2v2
zK2

s
; E~v�hk, ð19Þ

with v being the Fermi velocity.
Matching boundary conditions at x 5 0, we obtain

R~
il{eih0

i{leih0
~ei 2czh0{

p
2ð Þ, ð20Þ

where the parameters c and l are defined through

tan c~
l1{l2 sin h0

l2 cos h0
~

1{l sin h0

l cos h0
, ð21Þ

l~
l2

l1
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0{Eð Þ qzKð Þ
V0zEð Þ q{Kð Þ

s
~

V0{E
�hv q{Kð Þ~

�hv qzKð Þ
V0zE

, (22)

and

T~
1
l2

e
1
2ih0zRie{1

2ih0

h i
~

2 cos c

l2
ei cz

h0
2ð Þ: ð23Þ

For the spinor wave YD(r) describing a Dirac fermion in two dimen-
sions, the corresponding probability current density is

J D rð Þ:vY{
D rð ÞŝYD rð Þ~2v < y�1y2

� �
,= y�1y2

� �� �
, ð24Þ

where ŝ~ sx,sy
� �

and YD 5 [y1, y2]T. We have, in region I,

J I
D

J I
D

� �
x~v 1{ Rj j2

� �
cos h0~0;

J I
D

� �
y~v 2 sin h0z2 sin {2kx cos h0z2czh0ð Þ½ �;

(
ð25Þ

and in region II,

J II
D

J II
D

� �
x~0;

J II
D

� �
y~v Tj j2l1l2e{2qx~v 4 cos2 c

l
e{2qx:

(
ð26Þ

From Eqs. (14) – (15) and Eqs. (25) – (26), we observe identical
behaviors in the normal current densities (i.e., the x-component)
for both nonrelativistic and relativistic cases, but there is a significant
difference in the transverse current densities (i.e., the y-component).
In particular, as E/V0 R 0 (the hard-wall limit), we have

J I
S

� �
y

���
x~0

: J II
S

� �
y

���
x~0

?0 for the nonrelativistic case, while

J I
D

� �
y

���
x~0

: J II
D

� �
y

���
x~0

?2 1zsin h0ð Þ for the relativistic case. In

addition, it is apparent from Eqs. (14) – (15) that (JS)y is antisym-
metric (odd function) with respect to h0 so that its average over all

possible incident angles, �Jy
S:

ðp=2

{p=2
dh0 JSð Þy , is zero. The averaged

transverse current density�Jy
D in the relativistic case, however, tends to

a finite value in the hard-wall limit. A schematic comparison of
the y component of the probability current density J at the interface
(x 5 0) as a function of the incident angle h0 and the magnitude of the
reduced incident energy E/V0 between the Schrödinger and Dirac
cases is shown in Fig. 6. We see that the nonrelativistic transverse
current density (JS)y is antisymmetric with respect to h0, leading to
zero contribution to �Jy

S , while the relativistic transverse current den-
sity (JD)y is a nonnegative monotonic function of h0 so that there
exists a finite transverse current even for a fully chaotic ring when all

Figure 6 | Comparison of the y-component of the current density (coded by colors) as a function of the incident angle h0 and the height of the reduced

potential barrier E/V0 between the nonrelativistic (a) and relativistic (b) cases at the interface (x 5 0). (c) The y-component of the current density averaged

over all possible incident angles h0 as a function of E/V0: blue dash-dotted (red) curve is for the nonrelativistic (relativistic) case and the dash black line

denotes the theoretical estimation of the relativistic case based on Eq. (26) with the assumption E=V0=1. In both cases, the values of the current density

have been normalized by the respective maxima.
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possible incident angles are taken into account. Such a finite averaged
transverse current density �Jy

D with magnitude one half the maximum
makes it possible to form chaotic Dirac whispering gallery modes
that carry considerable directional currents. This is the fundamental
mechanism for the phenomenon of SPCs.

Note that, although Eqs. (25) and (26) appear different in form, at
the interfact (x 5 0) they give exactly the same current density (see
Supplementary Note 3). For V0 R ‘, the hard-wall boundary condition
is restored (the infinity-mass boundary condition). Physically the coun-
terintuitive phenomenon can be understood, as follows. The incoming
wave from the metal region (mass term M 5 0) is spin polarized along
its momentum (current) direction. After entering the insulator region, a
finite mass term acting on sz will change the direction of the spin and
hence affect the current via the spin-momentum locking term k ? s.
The relevant Hall-like phenomenon associated with the T-breaking
mass potential has been uncovered in a very recent work78. In addition,
we note that the results do not depend on the special form of the wave
function in region II (although such a symmetric form is convenient for
analysis). In fact, we obtain the same results38 when choosing the
wavefunction to have the form , [1, C(E)]T.

Experimental scheme. A possible experimental scheme to observe
and characterize Dirac WGMs and SPCs is, as follows. A 3D
topological insulator supports a (2D) gapless state on its surface,
with low-energy excitations described by the massless Dirac
Hamiltonian40,79 Ĥsurface~{i�hvF ŝ:=, where ŝ characterizes the
spin. The surface electronic structure is similar to that of graphene,
except that there is only a single Dirac point. Different from
graphene, the Dirac surface states of a topological insulator are
associated with strong spin-orbit interactions. In spintronics
applications of topological insulators, it is desirable to introduce a
gap into the surface states. This can be done by breaking the time-
reversal symmetry using a ferromagnet insulator (FMI) deposited on
the top of a topological insulator68. The exchange coupling induced
due to proximity to the ferromagnet insulator will give rise to a local
exchange field that lifts the Kramers degeneracy at the surface Dirac
point and introduces a mass term into the Dirac Hamiltonian. Thus,

generally, we have Ĥ~vŝ: p̂zeA
� 

zM rð ÞŝzzczBŝz , where the

vector potential A accounts for the effect of the external magnetic
field B~=|A~Bẑ, with an additional Zeeman splitting correction
in the last term. The controllable mass term Mŝz , responsible for the
local exchange coupling with a FMI cap layer, makes 3D topological
insulators a potential experiment platform for observing and
characterizing Dirac WGMs and SPCs.

Robust relativistic qubit based on WGMs. We speculate on a
potential application of DiracWGMs in quantum information
technology. Similar to the proposal of qubit in a two-dimensional
topological insulator based on the two different sets of helical edge
states localized at the boundaries56 and the idea of charge qubit in a
double quantum dot80, we present our qubit based on the chaotic
Dirac WGMs guided by the inner and outer surfaces in opposite
directions. Such an edge degree of freedom can be used to form a
two-state system, denoted by the states jonæ and joffæ for the outer and
inner chaotic DiracWGMs, respectively. The set {jonæ,joffæ} thus
constitutes a complete diabatic basis. Generally, these two states
correspond to two energy levels {EL(a), EU(a)} with a rather larger
difference (mismatch) and can be coupled and superpositioned for
different values of the magnetic flux. As a result, two different levels
of the system arise, say {EL(a9), EU(a9)}. The corresponding
instantaneous eigenstates {jLæ,jUæ} constitute an adiabatic basis. An
effective a-dependent Hamiltonian describing the flux-tunable qubit
can then be written in the adiabatic basis as Ĥa

qubi að Þ~EL að Þ Lj i Lh jz
EU að Þ Uj i Uh j, providing a base for exploiting the Dirac WGMs as a
qubit system.

Conclusions. We formulate a relativistic version of AB chaotic
billiards to study PCs in Dirac rings. We find that, in contrast to
the nonrelativistic quantum counterpart where PCs vanish for
chaotic rings, the currents continue to exist in the relativistic
chaotic AB rings and, in this sense, they are superpersistent. We
demonstrate that SPCs are a consequence of Dirac WGMs, and we
develop an analytic understanding of their emergence in relativistic
quantumsystems. We also propose that, experimentally, chaotic
rings patterned by magnetic domain heterostructures deposited on
the surface of a 3D topological insulator can be a feasible scheme to
observe and characterize chaotic Dirac WGMs and SPCs. The
coexistence of inner and outer chaotic Dirac WGMs naturally
forms a flux-tunable two-level system. To investigate the magnetic
response of chaotic Dirac fermions is not only fundamental to the
emerging field of relativistic quantum chaos, but also relevant to
device applications based on Dirac materials.
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