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The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering
systems, where the resonance profile is typically asymmetric. Whether the parameter
characterizing the asymmetry should be complex or real is an issue of great exper-
imental interest. Using coherent quantum transport as a paradigm and taking into
account of the collective contribution from all available scattering channels, we derive
a universal formula for the Fano-resonance profile. We show that our formula bridges
naturally the traditional Fano formulas with complex and real asymmetry parameters,
indicating that the two types of formulas are fundamentally equivalent (except for
an offset). The connection also reveals a clear footprint for the conductance reso-
nance during a dephasing process. Therefore, the emergence of complex asymmetric
parameter when fitting with experimental data needs to be properly interpreted.
Furthermore, we have provided a theory for the width of the resonance, which relates
explicitly the width to the degree of localization of the close-by eigenstates and the
corresponding coupling matrices or the self-energies caused by the leads. Our work
not only resolves the issue about the nature of the asymmetry parameter, but also
provides deeper physical insights into the origin of Fano resonance. Since the only
assumption in our treatment is that the transport can be described by the Green’s func-
tion formalism, our results are also valid for broad disciplines including scattering
problems of electromagnetic waves, acoustics, and seismology. C 2015 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons
Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4906797]

I. INTRODUCTION

A fundamental phenomenon associated with quantum or wave scattering dynamics is Fano reso-
nance.1,2 A typical scattering system consists of incoming channels, a scatterer or a conductor, and
outgoing channels. The scatterer, when isolated, can be regarded as a closed system with a discrete
spectrum of intrinsic energy levels. When the energy of the incoming particle or wave matches an
energy level, a resonant behavior can arise in some experimentally measurable quantities, such as
the conductance in a quantum-transport system. The resonance profile is typically asymmetric, and
can in general be expressed as (ε + q)2/(ε2 + 1), where ε is the normalized energy deviation from
the center of the resonance, and q is the parameter characterizing the degree of asymmetry of the
resonance. The asymmetry parameter q is of great experimental importance as it determines how the
experimental data can be fitted by the Fano profile.

The profile was first derived by Fano1 in the study of inelastic scattering of electrons off the
helium atom and auto-ionization, although the phenomenon was predicted earlier in elastic neutron
scattering.3 Being a general wave interference phenomenon, Fano resonance has been found in many
contexts in physics, such as photon-ionization,4 Raman scattering,5,6 photon-absorption in quantum-
well structure,7,8 scanning microscopy tunneling in the presence of impurity,9–11 transport through
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a single-electron transistor12 and through the Aharnov-Bohm interferometer,13–16 transport through
crossed carbon nanotubes,17,18 microwave scattering,19 plasmonic nanostructures and metamateri-
als,20 and optical resonances.21–24 Applications exploiting Fano resonance have even been proposed
for biochemical sensors.25

Although it is of high experimental relevance, the issue that whether the asymmetric parameter
q should be real or complex remains confusing in the literature.26 For example, it was demonstrated
that, in single-channel scattering quantum-transport systems, q is strictly real if the time-reversal
symmetry (TRS) is preserved.27 When the TRS is broken, q will generally be complex,27 which was
observed experimentally in an Aharnov-Bohm interferometer with a quantum dot embedded in one of
the arms.15,16 With a changing magnetic field, q oscillates, which was explained28 but again by using
the single-channel scattering model. Later, it was shown that for multi-channel scattering, q is in gen-
eral complex even when TRS is NOT broken.29 It was also proposed27 that the complex q parameter
can be used to characterize the dephasing time. The variation in q and the degree of decoherence were
studied in microwave billiards where a non-zero imaginary part of q was declared.19 Moreover, it was
suggested that the trajectory of q in its complex plane could be used to probe whether the decoherence
is caused by dissipation or dephasing.30 Complex q parameter was used in other contexts as well,
such as the second-order effects in helium auto-ionization excited by electron impact31 and ultrashort
laser excitation in the bismuth single crystal.32

The above theoretical investigations of the Fano line shape in the conductance all employed the
calculation of the transmission coefficient of a particular scattering channel, namely, |tnm|2. Since for
different channels the resonant line profile can be quite different,28,29 the final line shape summing
over all possible channels is still undetermined.

In this paper, we derive the asymmetric Fano resonance profile using the Green’s function method
to calculate the transmission, taking into account of all transmission channels, and address the ques-
tion of whether the fundamental q parameter should be complex or real. To be concrete, we focus on
low-dimensional quantum-transport systems exemplified by quantum dots or quantum point contacts.
Despite the relatively long history of research on Fano resonance, for quantum transport systems the
asymmetric profile has been studied much later.12,33–35 Our approach to probing into the nature of the
q parameter consists of two steps. First, by using the non-equilibrium Green’s function to calculate,
for all scattering channels, the transmission as a function of the Fermi energy, we derive a formula
for the resonance profile and verify it numerically using graphene quantum dot systems. The key
approximation employed is that the self-energy terms and the coupling functions are slow variables,
so for energy near an isolated resonance, the Green’s function can be decomposed into a fast and a
slowly varying components. Second, we show that our formula bridges naturally the conventional
Fano formulas with complex and real q parameters. In particular, we find a simple mathematical
transform that can convert the Fano formula with complex q parameter to our formula, and another
transform that turns our formula into the Fano formula with real q parameter. The implication is that,
for any experimental situation the conventional Fano formulas with complex or real q parameter are
equally applicable, given that an offset can be added to the real q Fano formula, which is common in
fitting experimental data.12,15,16,36,37 Our investigation also leads to an expression of the width of the
resonance, which is explicitly related to the degree of localization of the close-by eigenstates for the
closed system and the corresponding coupling matrices or the self-energies caused by the leads. Since
the self-energies are slow variables, the width depends mostly on the eigenstates, i.e., if the eigenstates
is highly localized, then its values at the boundary will be minimum and the cross integration with
the self-energies will be significantly small, leading to sharp resonances.

In our analysis, no detailed information about the specific system is required. Thus, our formula
and its direct consequence hold for any coherent transport dynamics for both bosons and fermions.
Especially, for bosons, i.e., phonons, the control parameter is not the energy but the frequency, thus
requiring only a straightforward modification in our formula. For fermion transport, our formula
is valid for small-scale electronic devices such as quantum-dot systems, quantum point contacts,
nano-scale heterostructures, and single-molecule transport devices.

The rest of the paper is organized as follows. Section II derives the profile of the Fano resonance
starting from the general frame work of calculating transmission and discusses the connection to the
well-known Fano formula with both real and complex asymmetric parameters. Section III provides an
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approximate expression of the width of the Fano resonance with a clear physical picture, which relates
the strong localized scar/pointer38–42 states to sharp conductance fluctuations. Concluding remarks
are then presented in Sec. IV.

II. THE FANO RESONANCE

A. General scheme for quantum transport

Without loss of generality, we consider a two-terminal quantum-dot system, which can be formu-
lated as follows.43 The system is divided into three parts: left lead, conductor (scatterer) of arbitrary
shape, and right lead, where the semi-infinite left and right multi-mode electronic waveguides are
assumed to be uniform, connected only to the conductor (or the scattering region), as shown in Fig. 1.
The conductor is chosen to include all the irregular components in the scattering system such as
geometrical shape, arbitrary electric or magnetic potential, and/or disorder, etc. The conductor can be
a single molecule, a quantum dot, or any other small-scale structure through which electronic waves
pass coherently. The tight-binding Hamiltonian matrix can then be written as

H =
*...
,

HL HLC 0
HCL HC HCR

0 HRC HR

+///
-

, (1)

where HC is a finite-size square matrix of dimension NC × NC, NC is the number of discrete points
in the conductor, and HL,R are the Hamiltonians of the left and right leads, respectively. The various
couplings between the conductor and leads are given by the matrices HLC, HCL, HCR, and HRC.

The effect of the semi-infinite uniform leads can be treated by using non-Hermitian self-energy
terms, ΣL, ΣR, for the left and right leads, respectively, which are determined by

ΣL ≡ HCLGLHLC, and ΣR ≡ HCRGRHRC, (2)

where GL,R are Green’s functions for the left and the right leads. For practical analysis, the self-
energies can be calculated efficiently using some standard recursive method.44–46

The retarded Green’s function for the conductor is given by

GC(E) = (EI − HC − Σ)−1, (3)

where Σ = ΣL + ΣR is the total self-energy from both leads. The coupling matrices ΓL(E) and ΓR(E)
are the difference between the retarded and the advanced self-energy:

ΓL,R = i(ΣL,R − Σ†L,R), (4)

FIG. 1. A general scheme for transport through a conductor or a scatterer connected with two semi-infinite leads. The leads
are assumed to be uniform. The conductor contains any irregular component of the scattering system. For example, it can be
a scatterer with a nonuniform shape, or with a whole that mimics the Aharonv-Bohm interferometer, or with irregular electric
or magnetic potential or disorders, or a single molecule.
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which characterize the coupling between the conductor and the leads, and are Hermitian: Γ†L,R = ΓL,R.
For notational convenience, we write GC ≡ G.

The quantum transmission T(E), as a function of the Fermi energy, is given by43

T(E) = Tr[ΓL(E)G(E)ΓR(E)(G(E))†]. (5)

The classic Landauer’s formula47 can then be used to calculate the conductance:

G(EF) = 2e2

h


T(E)

(
− ∂ f
∂E

)
dE, (6)

where T(E) is the transmission of the conductor and f (E) = 1/[1 + e(E−EF)/kT] is the Fermi distri-
bution function. At low temperature, −∂ f /∂E ≈ δ(E − EF), thus G(EF) = (2e2/h)T(EF). To be con-
crete, we focus on the low-temperature conductance, or equivalently, the transmission T .

B. Fast-slow expansion

To analyze the Fano resonance profile, the scales of variations (e.g., fast or slow with respect
to the energy variation) of the various quantities in Eq. (5) are the key. Indeed, the self-energy Σ
varies slowly with the energy, so do the coupling matrices ΓL,R. That is, in the energy scale where the
transmission exhibits rapid, nearly abrupt oscillations, e.g., through a Fano resonance, the value of
the self-energy matrix elements can be regarded as approximately constant, as shown in Fig. 2. The
change in the transmission must then come from the energy-dependence of the Green’s function G(E).
Our idea to probe into the Fano resonance profile is then to consider a small energy range about such a
resonance and decompose the Green’s function G(E) into two components: G(E) = G0(E) + G1(E),
where G0(E) and G1(E) are the slow and fast components, respectively. The transmission can then

FIG. 2. For a graphene quantum dot, a demonstration of the slow variation of the self-energy through a Fano resonance,
where the solid curve is transmission versus E with sharp resonances, the dotted and dash-dotted curves denote the real
and imaginary parts of an arbitrary element of the self-energy matrix, respectively. The spikes in the self-energy indicate the
energy value at which the number of the transmitting modes in the leads increases. The inset shows a zoom-in with a few
transmission resonances. It can be seen that in any small energy interval about a single resonance, the self-energy can be
regarded as a constant.
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be expressed as

T = Tr[ΓLG0ΓR(G0)†] + Tr[ΓLG0ΓR(G1)†]
+Tr[ΓLG1ΓR(G0)†] + Tr[ΓLG1ΓR(G1)†]
= T00 + T01 + T10 + T11, (7)

where ΓL, ΓR, and G0(E) are treated as constant matrices. Among the four terms in Eq. (7), only T00
varies slowly with the energy. Unlike the standard perturbation theory, here G1(E) is the fast changing
component of the Green’s function, but it is not necessarily small. Thus the remaining three terms
T01, T10, and T11 exhibit approximately the same behaviors in terms of their magnitudes and rates of
change with the energy. Consequently, T11 cannot be regarded as a second-order term. Note that T01
and T10 are not independent of each other:

T†01 =
�
Tr[ΓLG0ΓR(G1)†]�†

= Tr[(G1)(ΓR)†(G0)†(ΓL)†]
= Tr[ΓLG1ΓR(G0)†] = T10,

where we have used the relation Γ†L,R = ΓL,R and the invariant property of trace under cyclic permu-
tations. Similarly, we have T†11 = T11 so that T11 is real.

C. Construction of G1

The Green’s function can be expressed in matrix form as43 G(E) = αΨαΦ
†
α/(E − εα), where

the summation is over all the eigenstates, Ψα and Φα are the right and left eigenvectors associated
with the eigenvalue εα of the generalized Hamiltonian matrix (HC + Σ): [HC + Σ]Ψα = εαΨα,Φ

†
α[HC

+ Σ] = εαΦ†α. In general, the self-energy is not Hermitian and, hence,Ψα andΦα are not identical but
form a bi-orthogonal set: Φ†αΨβ = δα,β. The eigenvalues εα are generally complex: εα = Eα − iγα,
where the imaginary part originates from the self-energy and characterizes the lifetime of the corre-
sponding state before it tunnels into the leads.

Consider a small energy interval that contains a transmission resonance, in which G(E) can be
decomposed into a slowly varying and a fast changing components: G(E) = G0(E) + G1(E). Let E0
denote the center of the resonance. In the small energy interval about E0, we can identify a small
setΩ0 of eigenstates and write G1(E) = α∈Ω0ΨαΦ

†
α/(E − εα), and the summation over all the other

eigenstates can be denoted as G0(E). G1(E) is the fast component because, for E around E0, only
those states whose energies are close to E0 will contribute to the variation of G(E). Note that although
the identification of Ω0 can be somewhat arbitrary, practically, when an eigenstate is well separated
from others and the corresponding eigenvalue has a small imaginary part, i.e., γα < Eα+1 − Eα and
γα < Eα − Eα−1, it will result in a transmission resonance by itself with energy scale γα, as shown
in Fig. 3. In this case, Ω0 can be chosen to have only one eigenstate α. This will be our focus in the
following derivation of the resonance profile.

Situation can also arise where the eigenenergies of a small number of eigenstates are close to each
other and have large γα values, i.e., γα is larger than the spacing between the real parts of adjacent
eigenvalues. In this case, the transmission resonances from these eigenstates are not separable, and
the resulting resonance profile is the mixture of the isolated profiles.

D. The universal formula

For a single separated resonance, G1(E) is given by:

G1(E) = ΨαΦ
†
α

E − εα
, (8)

and G0(E) can be regarded as a constant matrix and approximated by its value at E0: G0(E) ≈ G0(E0)
= G(E0) − G1(E0) ≡ G0, where G(E0) = [E0I − HC − Σ(E0)]−1. Alternatively, the Green’s function
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FIG. 3. Identification of the eigenstate set Ω0: for the same graphene quantum dot in Fig. 1 in the main text, transmission
versus energy in a small interval that contains two Fano resonances. The circles below the curve indicate the locations of
εα = Eα − iγα. There is a well separated resonance profile about E0, which occurs at εα.

can be expressed as

G(E) ≈ G0 + G1(E) = G0 +
ΨαΦ

†
α

E − εα
.

The coupling matrices vary slowly with the energy and can be regarded as constant matrices evaluated
at E0 as well:

ΓL,R(E) ≈ ΓL,R(E0) = i[ΣL,R(E0) − Σ†L,R(E0)].
With the separation of the various quantities into slow and fast components, we can express the trans-
mission T(E) as

T (E) = Tr[ΓL(E)G(E)ΓR(E)(G(E))†]
≈ Tr[ΓL(E0)(G0 + G1(E))ΓR(E0)(G0 + G1(E))†]
= Tr[ΓL0G0ΓR0(G0)†] + Tr[ΓL0G0ΓR0(G1(E))†]
+Tr[ΓL0G1(E)ΓR0(G0)†]
+Tr[ΓL0G1(E)ΓR0(G1(E))†]
= T00 + T01(E) + T10(E) + T11(E) ≡ Tsum(E), (9)

where T00 is a constant and Tsum(E) gives the approximation of transmission curve T(E) about a single,
isolated resonance. Substituting the expression of G1(E) into the above, we have

T01(E) = T01(E0)E0 − Eα − iγα
E − Eα − iγα

,

T10(E) = T10(E0)E0 − Eα + iγα
E − Eα + iγα

,

T11(E) = T11(E0) (E0 − Eα)2 + γ2
α

(E − Eα)2 + γ2
α

,
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FIG. 4. A demonstration of the energy variations of the different terms in the expansion expression (9) with results from
direct numerical calculation. Since T10(E) = T01(E)†, it is only necessary to plot T01(E).

where T01(E0), T10(E0), and T11(E0) can be evaluated numerically. Figure 4 shows the energy vari-
ations of different terms in the expansion expression (9). We observe that the numerical value of
T11(E) is comparable with those of T01(E) and T10(E), and T01(E) = T10(E)∗, where ∗ denotes complex
conjugate. Substituting these expressions into Tsum, we obtain

Tsum(E) = T00 +
1

(E − Eα)2 + γ2
α

×
(

T01(E0) + T10(E0)
)
(E0 − Eα)(E − Eα)

+T11(E0)(E0 − Eα)2
+iγα(E − E0)

(
T10(E0) − T01(E0)

)
+γ2

α

(
T01(E0) + T10(E0) + T11(E0)

)
.

Without loss of generality, we set E0 = Eα, leading to

Tsum(E) = T00 +
1

(E − Eα)2 + γ2
α

×

iγα(E − E0)

(
T10(E0) − T01(E0)

)
+γ2

α

(
T01(E0) + T10(E0) + T11(E0)

)
,

= T00 +
T01(E0) + T10(E0) + T11(E0)

(E − Eα)2 + γ2
α

×

iγα(E − E0) T10(E0) − T01(E0)

T01(E0) + T10(E0) + T11(E0)
+γ2

α


.
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Letting

∆T = T01(E0) + T10(E0) + T11(E0)
= 2Re(T01(E0)) + T11(E0),

qr =
i
2

T10(E0) − T01(E0)
∆T

=
Im(T01(E0))48

∆T
,

we have

Tsum(E) = T00 +
∆T

(E − Eα)2 + γ2
α

�
2qrγα(E − E0) + γ2

α

�
.

Letting E0 = Eα and ε = (E − Eα)/γα, we finally arrive at

Tsum(E) = T00 + ∆T
1 + 2qrε
ε2 + 1

. (10)

Validation of Eq. (10) is illustrated in Fig. 5, where the numerically obtained three isolated resonances
from a graphene quantum dot are shown, together with the respective theoretical profiles. Excellent
agreement is observed for energy around the resonance.

To compare with the Fano formula, we rewrite Eq. (10) as

T(E) = �
T00 − ∆T

�
+ ∆T

(ε + qr)2
ε2 + 1

+ ∆T
2 − q2

r

ε2 + 1
, (11)

where the second term is the standard Fano resonance profile1 and the third term is a symmetric bias.
Our Eq. (10) thus represents a more general formulation of the Fano-resonance profile, and it is consis-
tent with previous results, e.g., the Fano resonance profiles of conductance from the scattering-matrix
elements.28,29 In the original formula (ε + qr)2/(ε2 + 1), the asymmetry parameter qr is proportional
to the ratio of the transmission amplitudes for the resonant and non-resonant channels,1 and it is

FIG. 5. Comparison of Fano resonance profiles predicted by Eq. (10) with those from direct numerical computation:
(a) the graphene quantum dot system (inset) and the transmission curve for energy in the range 0 ≤ E/t ≤ 1, where t is
the nearest-neighbor hopping energy of the graphene lattice, (b-d) numerical (solid curves) and theoretical (dotted curves)
profiles of three isolated resonances.
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regarded as a real parameter. To see why q can take on complex values, as asserted in most exist-
ing works (e.g., those on conductance fluctuations28), we consider the case q2

r < 2, let qi =


2 − q2
r ,

define q = qr + iqi, and rewrite Eq. (11) as

T(E) = T00 − ∆T + ∆T
|ε + q|2
ε2 + 1

. (12)

In previous works, qr and qi are related to each other in a complicated way [see, for example, Eqs.
(4-12) in Ref. 28]. For qr <

√
2, our formula Eq. (11) is equivalent to Eq. (12) in Ref. 28, where the

first complicated term in their Eq. (12) is replaced by 2, i.e., q2
i = 2 − q2

r . This is consistent with Fig. 4
of Ref. 28, which shows damped oscillations of qr versus the magnetic flux with the maximum value
of 1.41. This relation was also observed in previous experimental studies15,16 of transport through a
quantum dot in an Aharonov-Bohm interferometer, where it is found that |q| is generally independent
of the magnetic field strength and traces out a circle in the complex q plane, although |q| can be larger
than 2 and the center is not at the origin [Fig. 6(b-c) in Ref. 16]. The former is understandable as q is
normalized by∆T , which can be quite different depending on the specific fitting procedure employed.
However, given that ∆T is fixed and determined as in our formula, |q|2 should be 2. Thus, our deriva-
tion allows us to verify that in the normalized Fano resonance profile, the asymmetry parameter can
in general be complex, regardless of the time reversal symmetry,29 and |q| = √2. This is a universal
value, independent of any details of the transport or scattering process, insofar as it can be treated by
the non-equilibrium Green’s function formalism. Thus we expect our formula Eq. (10) to be valid for
general coherent transport through quantum dots, small scale organic crystals, single molecules, and
other small-scale structures.

E. Connection to the Fano formula with complex and real asymmetric parameters

We now demonstrate a surprising consequence of Eq. (10), bridging of the Fano formulas with
complex and real asymmetry parameter. In particular, we can show that the standard Fano formula
with complex q parameter is equivalent to Eq. (10), and using another transformation, Eq. (10) is
equivalent to the standard Fano formula with real q parameter. The indication here is that the Fano
formulas with complex and real q parameters are connected through Eq. (10). Thus in an experimental
fitting both real and complex q values are meaningful, and they give essentially the same physics.49

The Fano formula with complex asymmetric parameter has the form

T = |td |2 |ε + q′|2
ε2 + 1

, (13)

where |td |2 is the direct transmission without the presence of a scattering region, q′ is the complex
asymmetric parameter. To see its relation with Eq. (10), we can write

T00 + ∆T
1 + 2qrε
ε2 + 1

= |td |2 |ε + q′|2
ε2 + 1

. (14)

Expanding both sides and letting the coefficients of different ε terms be equal, we obtain

T00 = |td |2,
∆T = |td |2(|q′|2 − 1),
qr = q′r/(|q′|2 − 1),

or

|td |2 = T00,

q′r = ∆Tqr/T00,

q′i =


1 + ∆T/T00 − q2
r(∆T/T00)2,

where the parameters of Eq. (10) can be expressed by the parameters for Fano formula with complex
asymmetric parameters, and vice versa. That is, the two are equivalent. Moreover, from the relation
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FIG. 6. For a single resonance given by Eq. (10), (a) T00 = 0.3, ∆T = 0.3, qr = 1.2, the resulting parameters for Eq. (13)
are |td |2 = 0.3, q′r = 1.2, q′i = 0.748. (b) T00 = 10.3, ∆T = 0.3, qr = 1.2, the resulting parameters for Eq. (13) are
|td |2 = 10.3, q′r = 0.035, q′i = 1.014.

we see that |q′| = √1 + ∆T/T00. When T00 (or |td |2) is large, since ∆T is on the order of one, q′r is
close to zero while q′i is close to 1. This may be misleading because for q′i ≫ q′r , it may appear that
the resonance is almost symmetric as discussed in previous studies,35 but this may not be the case.
Figure 6 shows the resonance profile for two cases, one with T00 = 0.3 (a) and another with T00 = 10.3
(b), with ∆T and qr being fixed. One can see that, since only T00 is different, the resonance profile
only has a shift for the two cases, and it has a strong asymmetric form. However, the resulting (q′r ,q

′
i)

for Eq. (13) are (1.2, 0.748) for (a) and (0.035, 1.014) for (b), indicating an asymmetric form for the
former and a symmetric form for the latter.35 Thus, although the two cases has the same resonant
form, one may not be able to see that from the numerical values of (q′r ,q

′
i) as they change drastically.

When there is only one transmitting mode in the leads, the maximum transmission is 1. In this
case, when time reversal symmetry is present, the asymmetric parameter q′ can be chosen to be real35

(q′i = 0). To distinguish with the above discussions, we use the symbol q for the real asymmetric
parameter. This leads to

1 + ∆T/T00 − q2
r(∆T/T00)2 = 0,

or

q2
r = (T00/∆T)2 + T00/∆T.

Since qr = Im(T01(E0))/∆T , this yields

(ImT01)2 = T2
00 + T00∆T.

The relations between the parameters are

T00 = |td |2,
∆T = |td |2(q2

r − 1),
qr = q/(q2 − 1),
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FIG. 7. (a) Contour plot of qr on the complex asymmetry parameter q′ plane. Note that qr diverges on the unit circle |q′| = 1.
For better visualization, for |qr | > 1, it is normalized to sign(qr)[1+log10 |qr |]. (b) qr versus the real asymmetry parameter q,
where it has two branches, |q | > 1 (solid blue curves) and |q | < 1 (dashed brown curve), corresponding to |q′| > 1 and |q′| < 1
in panel (a), respectively. The asterisks indicate the calculated values of qr and q from the corresponding q′, i.e., asterisks
in (c). The sequence numbers (1-4) indicate the correspondence to the change complex asymmetry parameter q′ in (c).
(c) Transmission (shifted) versus normalized energy demonstrating Fano profiles with a complex asymmetry parameter q′

(asterisk) circulating one cycle, where |q′| = √2, thus qr = q′r .

or,

|td |2 = T00,

q = ∆Tqr/T00,

To view the relation more directly, we can rewrite the above equations as follows. With q′

= q′r + iq′i and qr = q′r/(|q′|2 − 1) (Fig. 7(a)), we have,

1 + 2qrε
1 + ε2 =

 |ε + q′|2
1 + ε2 − 1


· 1
|q′|2 − 1

, (15)

where the left-hand side has the form of Eq. (10), and there is no constraint on q′. With qr = q/(q2 − 1)
or q = 1/(2qr) ±


1/(4q2

r) + 1 (Fig. 7(b)), we have

1 + 2qrε
1 + ε2 =

 (ε + q)2
1 + ε2 − 1


· 1

q2 − 1
. (16)

Note that the offset on the right-hand side can be moved to the left side. The relation between q and qr
is shown in Fig. 7(b). It has two separate branches, i.e., for |q| > 1 and |q| < 1, where the latter flips
the shape as the factor q2 − 1 is negative. When the complex parameter q′ = q′r + iq′i is given, qr can
be uniquely determined. However, when qr is given, q′r and q′i cannot be determined uniquely, but
trace out a circle: (q′r − 1/(2qr))2 + q′i

2 = 1 + 1/(4qr2) [see the contour lines in Fig. 7(a)]. Although
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different q′ on the circle may lead to distinct Fano profiles, they will collapse to a single curve deter-
mined by qr by applying a proper shift and scaling. In Ref. 30, it is found that such a parameter
q′ corresponds to a dephasing process [Eq. (7) in Ref. 30]. This implies that, although dephasing
breaks TRS and the resonance profile may look quite different for different values of q′, it leaves clear
footprints that all the profiles during a dephasing process can be tracked back to a single profile by
simple rescaling and shifting. In situations where |q′| is a constant, q′r is proportional to qr , and the
change of sign in qr indicates a sign change in q′r as well. Thus the sign change in q′r can simply be
revealed from the incline of the resonance profile.32 Figure 7(c) shows a series of Fano profiles with
complex asymmetry parameter q′ and |q′| = √2 (so qr = q′r). The calculated values of qr and q are
plotted on the qr(q) curves of Fig. 7(b). The corresponding changes in q and qr , when q′ circulates
the cycle, are indicated by the sequence numbers. A similar discussion linking an expression similar
to Eq. (10) to the real q-parameter Fano formula was provided by Shore in 1967.50

The above argument indicates that, in the experimental analysis of conductance or transmission
resonance, the standard Fano formula with either real or complex q parameter can be chosen, provided
that an offset can be applied. An alternative method is to fit with our formula Eq. (10). A general
conclusion is that, regardless of whether TRS is present or broken, the transmission resonance profile
can always be fitted by the Fano formula with real q parameter,49 although in certain cases the employ-
ment of complex q parameter may be more convenient, especially in applications such as probing
decoherence.30

III. WIDTH OF THE FANO RESONANCE

A. The expression of the width

In Eq. (10), the energy is normalized by γα, thus γα characterizes the width of the transmission
resonance. In the following we shall develop a perturbation theory to calculate γα.

Regarding the conductor as a closed system, the Hamiltonian matrix HC is Hermitian with a set
of real eigenenergies and eigenfunctions:

HCψ0α = E0αψ0α,α = 1, . . . ,N, (17)

where N is the number of points in the discretized conductor. The eigenstates {ψ0α |α = 1, . . . ,N} are
orthogonal and complete, thus they form a basis in theℜN space for the discrete spacial configuration
of the wavefunctions. Recall that

[HC + Σ]Ψα = εαΨα, (18)
εα = Eα − iγα,α = 1, . . . ,N, (19)

Since the self-energy matrix Σ has only nonzero elements in the subblock of boundary points con-
necting with the leads, for most of the eigenstates it can be treated as a perturbation. Thus for a given
eigenstate α, we have

εα = E0α − ∆α − iγα, (20)
Ψα = ψ0α − δrψαr − iδiψαi, (21)

where ∆α, γα, δr and δi are small quantities, E0α − ∆α = Eα, and ψαr (i) are the normalized perturba-
tions for the real (imaginary) part of the eigenfunction ψα0.

Substituting Eqs. (20) and (21) back into Eq. (18) yields

(HC + Σ)(ψ0α − δrψαr − iδiψαi) =
(E0α − ∆α − iγα)(ψ0α − δrψαr − iδiψαi).

Neglecting the second-order terms on both sides and using Eq. (17), we get

HC(δrψαr + iδiψαi) − Σψ0α ≈
(∆α + iγα)ψ0α + E0α(δrψαr + iδiψαi).
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Projecting both sides of the above equation to state α, i.e., ⟨ψ0α |·⟩, we obtain

∆α + iγα ≈ −⟨ψ0α |Σ|ψ0α⟩. (22)

This gives the first-order approximation of the shift in the eigenenergy caused by the coupling with
the leads. More explicitly, we can write51–53

γα ≈ −Im(⟨ψ0α |Σ|ψ0α⟩) = −⟨ψ0α |Im(Σ)|ψ0α⟩. (23)

Since Γ = ΓL + ΓR = i(Σ − Σ†) = −2Im(Σ), we have

γα ≈
1
2
⟨ψ0α |Γ|ψ0α⟩. (24)

Since the self-energy characterizes the coupling between the conductor and the leads, γα can
be regarded as the tunneling rate of the state Ψα, the eigenstate of the non-Hermitian Hamiltonian
HC + Σ. We see that γα is determined by the imaginary part of the self-energy Σ (or the coupling
matrix Γ) and the corresponding eigenfunction ψ0α of the isolated conductor. Since Σ (Γ) only has
nonzero elements at the boundary points of the conductor connecting with the leads, only the values
of ψ0α on the same set of points, i.e., the boundary points, contribute to γα. Therefore localized states,
typically with small ψ0α values at the boundary points, have small γα thus generate sharp resonances.

Figure 8 shows, for a small graphene quantum dot, the correspondence between the transmission
fluctuation and the calculated values of εα. The self-energy Σ is evaluated at E0 = 0.563t (somewhat
arbitrary), and the values of εα are then calculated as the eigenvalues of the non-Hermitian Hamilto-
nian HC + Σ. The positions of the resonances agree well with those from Eα. In principle, the plots are

FIG. 8. For a graphene quantum dot, (a) transmission T versus energy E , (b) the real and imaginary parts of the eigenenergy
εα. The circles denote the eigenenergy values calculated directly from the non-Hermitian Hamiltonian of the entire open
system: [HC + Σ]Ψα = εαΨα, where E0 = 0.563t is used for calculating the self-energy. The crosses represent results from
our first-order perturbation theory. The blue solid curve shows the line shape obtained by a further perturbation analysis of
the self-energy. The dotted vertical lines are for eye guidance.
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only accurate for the eigenenergies where Eα is close to E0 because Σ and hence εα are all dependent
upon the energy E. But we find that, even if Eα is far from E0, we still obtain reasonable agreement,
which can be attributed to the slow variation of the self-energy Σwith the energy. The blue solid curve
in Fig. 8(b) is derived from a further approximation of Σ (Eq. (32)).

B. Recovery of Eq. (12) for anti-resonance and resonant transmission

When there is only one transmitting mode, a particular focus is anti-resonance and resonant
transmission. Here we shall demonstrate that in such a case, our approach can also exhibit these
features.

From Eq. (12), we can obtain the extreme value of transmission, as follows. First, dT/dε = 0
leads to

εe = −1 ±


1 + 4q2
r/2qr .

Substituting this into Eq. (12) and letting Q = 1 + 4q2
r , we obtain the extreme value of transmission

as

Te = T00 + ∆T
±1
√

Q ∓ 1
2q2

r .

Note that qr → 0 leads to symmetric peak or dip, while qr → ∞ leads to the asymmetric form. For
small qr , i.e., qr ≪ 1 (Im(T01) ≪ ∆T), we have

√
Q =


1 + 4q2
r ≈ 1 + 2q2

r , leading to

Te = T00 + ∆T
±1

2q2
r + 1 ∓ 1

2q2
r

=



T00 + ∆T,
T00 − ∆T(2q2

r)/(2q2
r + 2) ≈ T00.

When there is only one transmitting mode in the leads and the TRS is preserved, for T00 = 1 and
∆T = −1, we have Te = 0 and 1, corresponding to an anti-resonance; while for T00 = 0 and ∆T = 1,
we have Te = 0 and 1, corresponding to a resonant transmission.

Next we show that the above situation, e.g., ∆T = 1 or −1 can arise in certain circumstances.
Recall that ∆T = 2ReT01(Eα)) + T11(Eα). We shall calculate ReT01 and T11. For large dots and narrow
leads, the self-energy Σ can be regarded as a small perturbation of HC. For highly localized states,
we have Ψα ≈ Φα ≈ ψ0α, yielding

γα ≈
1
2
⟨ψ0α |Γ|ψ0α⟩

≈ 1
2
⟨Φα |Γ|Ψα⟩

=
1
2
⟨Φ†α(ΓL + ΓR)Ψα⟩

=
1
2
(γα,L + γα,R).

For systems with an inversion symmetry, Ψα and Γ will also have the same symmetry, leading to

γα,L = γα,R ≈ γα.

For T11(Eα), we have T11 = Tr[ΓLG1ΓR(G1)†], where the energy is evaluated at Eα and G1 = ΨαΦ
†
α/

(iγα). We thus have

T11 = Tr[ΓLΨαΦ
†
α

iγα
ΓR
ΦαΨ

†
α

−iγα
]

= Tr[ΓLΨαΦ
†
αΓRΦαΨ

†
α]/γ2

α

= Tr[Ψ†αΓLΨαΦ
†
αΓRΦα]/γ2

α

= (Ψ†αΓLΨα)(Φ†αΓRΦα)/γ2
α
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≈ γα,L · γα,R/γ2
α

≈ 1.

This has been verified numerically. Similarly, we have

ReT01 = ReTr[ΓL

β,α

ΨβΦ
†
β

Eα − Eβ + iγβ
ΓR
ΦαΨ

†
α

−iγα
]

= ReTr[ΓL

β,α

Eα − Eβ − iγβ
(Eα − Eβ)2 + γ2

β

ΨβΦ
†
βΓR
ΦαΨ

†
α

−iγα
]

≈ −Tr[ΓL

β,α

γβ/γα

(Eα − Eβ)2ΨβΦ
†
βΓRΦαΨ

†
α]

= −

β,α

γβ/γα

(Eα − Eβ)2 (Ψ
†
αΓLΨβ)(Φ†βΓRΦα),

where γβ ≪ |Eα − Eβ | has been assumed. Defining γαβ = Ψ
†
αΓLΨβ and γβα = Φ

†
βΓRΦα, we have

ReT01 = −

β,α

γβγαβγβα/γα

(Eα − Eβ)2 .

In the case of resonance, typically γβ,γαβ,γβα,γα are small and are of the same order of magnitude.
We thus have γβ ∼ γαβ ∼ γβα ∼ γα ∼ γ, and

ReT01 = −

β,α

γ2

(Eα − Eβ)2 .

For a system with N discrete points, γ2/(Eα − Eβ)2 can be much smaller than 1/N , thus we have
ReT01 ∼ 0 and ∆T ∼ T11 ∼ 1.

For the case of anti-resonance, γβs can be large, and many terms need to be included, i.e., γ2/(Eα

− Eβ)2 ∼ n/N , especially for states close to α. We then have ReT01 ∼ −1, and ∆T ∼ 2ReT01 + T11
∼ −1.

C. Expansion of self-energy and a further simplified expression of the width

We can go one step further by expanding the self-energy. In general, the self-energy matrix Σ
can be expressed as43

Σ = −t

p


m∈p

χm,p exp(ikma)χ†m,p, (25)

where χm,p characterizes the eigenfunction of mode m in lead p. Note that only the values of ψ0α on
the boundary points of the conductor, say,ψ0α,p, contribute to γα. Since the boundary of the conductor
can be set arbitrarily without affecting the transmission, we can always choose a boundary slice of
points to be the same as a slice of the lead. For a slice of n discrete points, since { χm,p |m = 1, . . . ,n}
form a complete and orthogonal basis, we can express ψ0α,p as

ψ0α,p =

m

cαm χm,p. (26)

Substituting Eqs. (25) and (26) into Eq. (22), we have,

∆α + iγα ≈ −⟨ψ0α |Σ|ψ0α⟩
= t

p

⟨ψ0α,p |

m∈p

χm,p exp(ikma)χ†m,p |ψ0α,p⟩

= t

p

(

i

c∗i χ
†
i,p) × (


m∈p

χm,p exp(ikma)χ†m,p)
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×(

j

cj χ j,p)

= t

p


m, i, j ∈p

c∗i χ
†
i,p χm,p exp(ikma)χ†m,pcj χ j,p.

Since χ†i,p χ j,p = δi j, we get51–53

∆α + iγα ≈ t

p


m∈p

|cαm|2 exp(ikma), (27)

or

γα ≈ t

p


m∈p

|cαm|2 sin(kma). (28)

For a two-terminal quantum dot with reflection symmetry, the eigenfunction also has this symmetry,
and its value on the boundary points satisfy ψ0α,L = ±ψ0α,R, corresponding to even or odd parity. The
self-energy matrices and the eigenfunctions χi for the two leads are identical, so the contributions of
the first-order approximation from the two semi-infinite leads are equal. We have

∆α + iγα ≈ 2t

m∈p

|cαm|2 exp(ikma), (29)

or

γα ≈ 2t

m∈p

|cαm|2 sin(kma). (30)

Since kma is determined by the Fermi energy via the dispersion relation, the value of γα is mostly
determined by cαm, which is the expanding coefficient of ψ0α,L on the transverse eigenfunction χm

for the leads. To be specific, we can write

ψ0α =
*...
,

ψ0α,L

ψ0α,dot

ψ0α,R

+///
-

. (31)

The wave function ψ0α is normalized, i.e., ψ†0αψ0α = ψ
†
0α,Lψ0α,L + ψ

†
0α,dotψ0α,dot + ψ

†
0α,Rψ0α,R = 1.

For dispersive or transmitting states where ψ0α takes on similar values on all points, the values on the
boundary points are of the order of 1/

√
N . However, a localized state will have a large value ofψ0α,dot

on a small subset of points, e.g., points on a particular classically stable orbit in the dot. This will then
lead to small values of ψ0α,L on the boundary points, resulting in small cαm and γα. This localization
effect can be so strong that the values of γα are several orders-of-magnitude smaller, i.e., 10−5t versus
10−2t for the dispersive states (See Refs. 51–53 and also Fig. 3 in the main text).

When the leads are narrow, they will have only one transverse mode in a relatively large energy
interval. In this case, the summation (30) has only one term and becomes

γα ≈ 2t |cαm|2 sin(kma) ∼ sin(ka), (32)

where k(E) can be obtained from the dispersion relation, and we have assumed that the dependence
of cαm on α is weak and so can be treated as a constant. Figure 3 in the main text shows the results of
Eq. (32) together with the numerical results. We find a good agreement.

IV. CONCLUDING REMARKS

To summarize, we have developed a framework based on coherent quantum transport to estab-
lish the universality of the Fano resonance profile. Technically, our approach is to decompose the
non-equilibrium Green’s function into a fast and a slow components, enabling us to derive a general
formula for the resonance. In cases where the fast component of the Green’s function is dominated by
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only one eigenstate of the conductor, the Fano resonance profile can be described by Eq. (10), which
is equivalent to the Fano formula with either real or complex q parameter. We have provided simple
mathematical transformations to connect the three forms. Thus, for a given resonance, depending on
the choice of the free parameters, it can be fitted by any of the three formulas with distinctly different
q values. Note that for certain cases where the consideration of time-reversal symmetry is important,
the choice of Fano formula with complex q parameter is preferred.15,16,30 However, as we have demon-
strated in this work, if a resonance can be fitted by Fano formula with complex q parameter, then it
can also be fitted by Eq. (10) and consequently the Fano formula with a real q parameter. Therefore, a
fitting to Fano formula with complex q parameter is not absolutely necessary for any single resonance,
although a series of resonances may preferably be fitted by the formulas with a a set of complex q
parameters, which may be particularly useful in probing phenomena such as decoherence.30

The width of the resonance, which also characterizes the lifetime of the eigenstate in the originally
closed conductor, is mainly determined by the eigenfunction of the conductor, especially the values at
the boundary, given that the self-energies vary slowly with the energy. For dispersive or transmitting
states, the boundary values of the eigenfunction can be large, leading to a strong coupling between
the conductor and the leads. Tunneling to the lead is then facilitated, resulting in a short lifetime and,
consequently, in a large resonance width. The conductance curve will appear “smooth” with energy
variation. In the opposite case, if a state is highly localized, i.e., on a classically stable orbit, then the
eigenfunction assumes large values on this orbit, but can be extremely small anywhere else, including
the boundary. The coupling of this state to the leads can be significantly weaker, leading to a long
lifetime and a much smaller resonance width. In this case, the conductance curve will exhibit abrupt
variations as represented by a sharp Fano resonance. This connection between the scar/pointer state
and the abrupt variation in the conductance curve has been noticed before.38–42

While we have treated only two terminal transport systems, Fano resonance in multi-terminal
systems can be treated similarly, where Eq. (10) and the interpretation of the resonant width remain
valid. Due to the ubiquity of Fano resonance and the only assumption in our derivation is that the
transport can be described by the Green’s function formalism (which can be expanded to include de-
coherence in a proper way27,30), our formula and finding apply not only to quantum transport, but also
to wave scattering phenomena arising from diverse fields such as electromagnetic waves, acoustics,
and seismology.
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