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Abstract – We consider a class of relativistic quantum systems of ring geometry with mass con-
finement, subject to a magnetic flux. Such a system supports a family of boundary modes with
edge-dependent currents and spin polarization as the spinor-wave analog of the whispering galley
modes. While these states are remarkably robust against random scattering, boundary deforma-
tions and/or bulk disorders can couple the two oppositely circulating base states. Superposition
of the two states can be realized by sweeping an external magnetic flux. We also address the issue
of decoherence and articulate a possible experimental scheme based on 3D topological insulators.

Introduction. Two-level systems are fundamental not1

only to the development of quantum mechanics [1], but2

also to quantum information processing and comput-3

ing [2]. Exploiting various physical systems to realize two-4

level operation has been an active area of research for a few5

decades [3–5]. Among various types of two-level systems,6

superconducting and semiconductor-based systems are of7

particular interest [6]. A basic requirement for an effective8

two-level system is that it provides two controllable states9

such as the direction of the circulating currents on a ring,10

the charge states in a double quantum dot, and the elec-11

tron spin. The performance of the device is affected by12

the coupling of these states with the environment and by13

their robustness against material defects or various types14

of random interactions. For example, two-level operation15

in a double quantum dot system is sensitive to charge noise16

and electrostatic fluctuations induced by interface rough-17

ness or bulk defects [7]. It is of general and continuous18

interest to articulate and develop two-level systems that19

are robust against random scattering and weak direct en-20

vironmental coupling.21

Recent years have witnessed a rapid growth of interest in22

Dirac materials [8] such as graphene [9–15], topological in-23

sulators (TIs) [16], molybdenum disulfide (MoS2) [17,18],24

HITP [Ni3(HITP)2] [19], and topological Dirac semimet-25

als [20, 21]. A common feature of these materials is that26

the electronic motions can be approximately described by 27

the Dirac equation, with physical properties that are not 28

usually seen in conventional semiconductor materials. Ap- 29

pealing features of these materials include the emergence 30

of topologically protected quantum states and long-range 31

phase coherence [22], making them potential candidate for 32

solid state two-level systems. Theoretical schemes have 33

been proposed for graphene [23, 24], topological insula- 34

tors [25], and more recently the monolayer transitional 35

metal dichalcogenides [26]. 36

In this paper, we present a two-level system based on 37

a class of relativistic quantum modes, the Dirac spinor- 38

wave analog of the whispering galley modes (WGMs). In 39

particular, we consider the setting where a massless Dirac 40

fermion is confined within a finite domain of ring topology, 41

subject to a perpendicular magnetic flux at the center [23]. 42

The confinement can be generated from a mass poten- 43

tial, which can be experimentally realized using ferromag- 44

netic insulators [27]. A remarkable feature of the WGM 45

type of spinor waves in the ring geometry is that they 46

appear in pairs: one along the inner and another along 47

the outer boundaries with oppositely circulating currents 48

and spin polarizations, effectively forming a two-level rel- 49

ativistic quantum system. This Dirac system has peculiar 50

spin textures as the coupling between the spin and current 51

(momentum) constrains the spin directions into the plane 52
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transverse to the interface. The inner and outer states can53

be changed through tuning of the strength of the external54

magnetic field. The relativistic quantum two-level system55

is extremely robust against random scattering caused by56

boundary roughness and/or bulk electric disorders. Due57

to the breaking of the time-reversal symmetry (TRS) by58

the mass term, an insulator region is created. Based on59

the metal-insulator step junctions formed by spatially de-60

pendent mass potential in 2D Dirac fermion systems, we61

present an analytic argument to understand the origin of62

the robustness and the edge-dependent current/spin polar-63

izations. A counter-intuitive feature is that, the inevitable64

boundary roughness and/or bulk defects are in fact de-65

sired, as they serve to introduce a finite coupling between66

the states, which is necessary for generating coherent os-67

cillations through non-adiabatic sweeping of the external68

magnetic flux. We address the issue of decoherence and69

propose an experimental realization using 3D topological70

insulators (TIs). Our decoherence analysis based on a71

spin-boson model indicates that, for example, for a ring72

size of 100 nm, the quantum quality factor can be on the73

order of 104. Moreover, due to the TRS breaking confine-74

ment, our two-level system is less sensitive to electrostatic75

fluctuations than those based on conventional split-gate76

electrodes.77

In the following, we first formulate a theoretical model78

and propose our relativistic quantum two-level system79

based on Dirac WGMs. We next demonstrate robustness80

and coherence of the system against random scatterings,81

and provide a physical explanation. We then address the82

issue of decoherence and finally conclude the work by ar-83

ticulating a feasible scheme for experimental realization.84

Dirac Hamiltonian and two-level operation. We consider
a 2D Dirac ring threaded by a magnetic flux Φ, as shown
in Fig. 1(a). The Hamiltonian is

ĤD = ~vσ̂· (−i∇+ eA) +M(r)σ̂z, (1)

where v is the Fermi velocity, σ̂ = (σ̂x, σ̂y) and σ̂z are the
Pauli matrices. The vector potential is A(r) = (Φ/2πr)êθ
in the polar coordinates, with the magnetic field given by
B = αΦ0δ(r)êz. The dimensionless quantum flux param-
eter is α = Φ/Φ0 with Φ0 = 2π/e being the flux quantum.
The mass confinement term M(r) is zero inside the ring
domain and infinity elsewhere, giving rise to the hard-wall
boundary conditions [28,29]:

[1− sgn(M)n̂⊥ · σ̂]ψ = 0, (2)

where n̂⊥ denotes the unit tangent vector at the bound-85

aries and ψ = [ψ1, ψ2]T is the eigenspinor.86

In the polar coordinates, the kinetic part of the Hamil-
tonian Eq. (1) reads

vσ̂· (−i∇+ eA) = −iv
[
σ̂r∂r + σ̂θ

1

r
(∂θ + iα)

]
, (3)

where σ̂r = σ̂x cos θ+σ̂y sin θ and σ̂θ = −σ̂x sin θ+σ̂y cos θ.

For a circularly symmetric ring, ĤD commutes with the

the total angular momentum (Ĵz = −i∂θ + σ̂z/2). The
corresponding eigenspinors ψ thus have the following form

ψl(r) = exp[i(l − 1/2)θ]

(
ϕl(r)

iϕl+1(r) exp(iθ)

)
, (4)

with

ϕl(r) = N
(
H

(1)

l−1/2(κr) + βH
(2)

l−1/2(κr)
)
, (5)

where N denotes the normalization constants, l = l + 87

α (l = ±1/2,±3/2, · · · are the eigenvalues of Ĵz), H
(1,2)
ν 88

are Hankel functions of the (first, second) kind and κ = 89

|E|R/v. The eigenstates and eigenvalues are determined 90

by imposing the boundary condition Eq. (2). 91

Using the local charge current density j = vψ†σ̂ψ, we 92

can obtain an expression for the edge current j(rB) = 93

2v|ψ1|2sgn(M)n̂⊥ and show that it is polarized along the 94

edges, clockwise for the inner and counterclockwise for 95

the outer boundaries. Adopting the spin operator in the 96

Hamiltonian as [25] Ŝ = 1/2(σ̂y,−σ̂x, σ̂z) we obtain that 97

the edge spin direction S(rB) = |ψ1|2sgn(M)n̂‖ is parallel 98

to the outer normal vector n̂‖, where rB specifies the co- 99

ordinates of the boundary points. The detailed form of the 100

confinement potential M(r) and disorders in the system 101

will affect the magnitude of the edge charge current/spin 102

but not the polarization properties. This current/spin po- 103

larization characteristic makes the system a potential can- 104

didate for relativistic quantum two-level operation. 105

For two-level operation, in addition to the well de- 106

fined current/spin polarization characteristic, it is neces- 107

sary to lift the state degeneracy in the circular symmetric 108

ring [23]. Intuitively, this can be accomplished through 109

the boundary roughness of the ring or defects in the 110

bulk, with the current/spin polarization characteristic well 111

maintained. Without loss of generality, we consider a class 112

of deformed Dirac rings with shape being a conformal im- 113

age of the circular-symmetric ring so that the eigenstates 114

can be determined efficiently and accurately [30, 31]. The 115

conformal mapping of the circular ring domain z is given 116

by w(z) =
∑
n cnz

n where n = 5 and the coefficient vec- 117

tor is given by c = [1, 0.05g, 0, 0, 0.18g exp(iδ)], δ ∈ [0, 2π), 118

and g ∈ [0, 1] is the deformation parameter that opens the 119

gap at anti-level crossing. For relatively large deforma- 120

tion, e.g., g & 0.5, bottlenecks along the boundary occur, 121

leading to chaotic behavior in the classical ray dynamics 122

and random scattering in the quantum regime. Conven- 123

tional wisdom stipulates that the current/spin polariza- 124

tions along the inner and outer boundaries would be sup- 125

pressed or even eliminated. Remarkably, we find that the 126

(deformed) Dirac ring system and the associated polarized 127

properties in the charge current and spin texture can per- 128

sist in an extremely robust manner, as shown in Fig. 1, 129

where panel (b) shows the lowest few energy levels versus 130

α, panels (c) and (d) show, for the two energy values in- 131

dicated in b, the associated spinor eigenstates. The states 132

are radially localized at the ring edges with opposite prop- 133

agating edge currents, forming the spinor-wave-analog of 134
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the WGMs. The coupling between the spin and current135

(momentum) constrains the spatial spin texture into the136

Sr−Sz plane with Sr = σy cos θ−σx sin θ. From Figs. 1(c)137

and 1(d), we see that, at the boundaries, the spinors are138

planar with opposite polarization for the inner and outer139

states. Further, the oppositely circulating currents lead140

to opposite magnetic response in that the inner and outer141

WGM-like states are diamagnetic and paramagnetic, re-142

spectively. In absence of coupling between these WGM143

states (e.g., in absence of any random boundary scatter-144

ing or bulk disorder), a level-crossing structure will arise145

as the magnetic flux is varied.146

Fig. 1: (a) Proposed relativistic quantum two-level system pat-
terned as a ring domain through the deposition of a ferromag-
netic insulator (e.g., EuS) on the surface of the 3D TI, where
a controllable mass potential is created through local exchange
coupling (the proximity effect). (b) For g = 0.5, energy levels
versus α, where the dashed lines show the circularly symmet-
ric case for comparison. (c,d) The corresponding electronic
densities and the associated charge current distribution (up-
per panels) and spin texture (lower panels) of the two adjacent
Dirac WGMs indicated by the open circles in (b).

A pair of WGM-like states traveling along the inner and
outer boundaries define effectively a two-level system. For
simplicity, we use the symbols | 	〉 and | �〉 to denote the
two states, with the respective energy levels Ex(α) and
Ey(α). About the level anti-crossing point [i.e., minimal-
gap position in Fig. 1(b)], the states | 	〉 and | �〉 are cou-
pled and superposed with approximately equal amplitude.
An example of the “on-off” curves is shown in Fig. 2(a).
Rabi oscillations can be generated by varying the mag-
netic flux in a nonadiabatic manner. Specifically, the sin-
gle flux-tunable two-level system can be described by the
following 2 × 2 effective Hamiltonian in the pseudo-spin
representation as

Ĥtwo level = −(ε̃/2)τ̂z − (∆/2)τ̂x, (6)

where τ̂x,z are Pauli matrices in the pseudo-spin base of147

| 	〉 and | �〉, and ε = |Ex(α) − Ey(α)|. The level de- 148

tuning ε̃ = ε−ε0 can be adjusted by changing α, where ε0 149

characterizes the displacement with respect to the uncou- 150

pled situation. The tunnel coupling parameter ∆ is the 151

anti-crossing energy, which can be tuned by varying the 152

boundary deformation parameter g or the bulk disorder 153

strength. Non-adiabatic transitions between | 	〉 and | �〉 154

can be realized through non-adiabatic tuning of α such 155

that the level detuning changes from |ε̃| � ∆ to ε̃ = 0 156

(i.e. ε = ε0), driving the system from a pure | 	〉 (or | �〉) 157

state to the minigap position. This induces Rabi oscilla- 158

tions between | 	〉 and | �〉 at the angular frequency of 159

∆/2: cos(∆t/2)| 	〉 − i sin(∆t/2)| �〉. 160

We note that the effect of additional mass term (dy- 161

namical gap) generation induced by such a dynamical flux 162

is irrelevant in practice, as that requires an off-resonant 163

circularly polarized irradiation (laser) or a high-frequency 164

analog driving signal input [e.g., about 100 meV (∼ 1015 165

Hz) - see the work [32], and references therein]. In our 166

system, the time-dependent gauge potential induced by 167

the applied dynamic magnetic flux has a different form 168

from that generated by the circularly polarized laser field, 169

and the relevant operation (driving) frequency is on the 170

same order of magnitude of the energy spacing between 171

the two adjacent WGM states. The energy requirement 172

is 1 meV for a real ring size (say 100 nm). As a result, 173

the additional mass term can be neglected. The δ(r) field 174

adopted in our analysis is for theoretical simplicity only. 175

Insofar as the applied magnetic flux is confined within the 176

inner ring boundary, there is no essential difference in the 177

final results. In experimental implementation, it may be 178

feasible to generate a magnetic flux of finite size confined 179

within the inner ring boundary. 180

We now provide additional reasoning that our Dirac ring 181

system can effectively be approximated as a two-level sys- 182

tem. When two specific levels are chosen, the level spac- 183

ings from them to the lower or higher states should be 184

much larger than the two-level splitting energy to prevent 185

information leaking [33]. Our system fulfills this require- 186

ment. In particular, consider the two-level profile consist- 187

ing of a pair of WGM-like states as indicated in Fig. 1(b) 188

(open circles). We obtain that the level splitting is about 189

∆ ∼ 0.04~v/W , but the smallest level spacing from other 190

states is S ∼ ~v/W , which is about 25 times larger than 191

the former. For a realistic sample size, e.g., W = 100 nm, 192

we get S ∼ 5meV ' 60K and ∆ ∼ 0.2meV ' 2.5K � S. 193

This means that the chosen two-level profile is effectively 194

decoupled from other levels of the system. The splitting 195

energy ∆ in fact defines an effective temperature T under 196

which the dephasing effect of thermal noise can be ruled 197

out. In this sense, through tuning of the Fermi energy 198

near a desired position as indicated by the dotted blue 199

horizontal line in Fig. 1(b), for low temperatures (e.g., 200

kBT � ∆) we obtain a robust two-level quantum system 201

for some proper value of the magnetic flux. Note that our 202

theoretical proposal is based on the low energy model of 203

3D TIs, so it is adequate to focus on the low-lying states 204
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Fig. 2: Illustration of a flux-tunable two-level system based on
a pair of Dirac WGMs: (a,b) “on-off” curves, and (c,d) the
circulating current amplitudes and the anti-crossing energy as
a function of the deformation parameter g, respectively. The
dashed lines in (c) are for the non-relativistic counterpart of
our system.

only.205

Robustness against random scattering. The quantum206

states in our system, which are the Dirac spinor-wave207

analog of WGMs with opposite circulating currents and208

spin polarizations, are far superior to the same setup in209

nonrelativistic, semiconducting rings. This can be ar-210

gued, as follows. Say we calculate the slope of the states211

In = −∂En/∂α (the persistent current [34–52]), which212

measures the degree of coherence in terms of the states’213

ability to maintain circulation. The slope will have large214

and near zero values for circulating and angularly local-215

ized states, respectively. From Fig. 2(b), we see that the216

Dirac WGMs have quite large circulating currents. Re-217

markably, as the deformation strength g is increased, the218

corresponding current amplitudes denoted by the solid219

thick lines in Fig. 2(c) decrease much more slowly. For220

comparison, we calculate the corresponding behaviors for221

the non-relativistic counterpart of our system [the thin222

dashed lines in Fig. 2(c)], where the current amplitude de-223

cays much faster. Figure 2(d) shows that the mingap ∆224

increases with the deformation strength g, which is rea-225

sonable as gap opening is typically more pronounced as226

some symmetry-breaking parameter is increased.227

Taking advantage of the concept of persistent currents,
we can analyze the characteristics of our Dirac ring system
more explicitly using, e.g., the specific two-level profile as
shown in Fig. 2(a). We define the parameter

ε̃ ∼ 2Im(α− αc), (7)

where αc is the position of the anti-crossing and Im de-228

notes the maximum absolute amplitude of the persistent229

current carried by the quantum states. For successful two-230

level implementation, Im should be robust against vari- 231

ous kinds of random perturbations. To be concrete, we 232

consider a generic type of perturbation, namely, irregular 233

boundary deformations and demonstrate that the quan- 234

tum states are stable because they are robust relativistic 235

WGM-like states (the nonrelativistic counterparts are gen- 236

erally not robust against random scattering). Physically, 237

the boundary deformations can be conformally mapped 238

into a circular-symmetric ring domain as impurities. Our 239

two-level system should thus be robust against random 240

perturbations induced by, e.g., TRS breaking disorders. 241

Remarkably, the boundary deformations introduce the 242

necessary coupling between the states, which can be char- 243

acterized by ∆ as a function of deformation parameter g. 244

From Figs. 2(a)-(d), we can estimate that, for the case of 245

most severe deformation, i.e., g = 1, the maximum level 246

detuning ε̃M ∼ 0.88~v/W is still about five times larger 247

than the energy splitting ∆ ∼ 0.18~v/W , suggesting the 248

effectiveness of the two-level approximation. 249

Fig. 3: Physical mechanism of robust Dirac WGMs: (a) a
2D step junction with IM (left) and MI (right) configurations,
where the junction interface is located at x = 0, (b) inter-
face current orientation (jx, jy) (left panel) and spin texture
(Sx, Sz) (right panel) versus the incident angle θ0 and the rel-
ative energy η, where θ0 ∈ [−π/2, π/2] and θ0 ∈ [π/2, 3π/2]
for MI and IM, respectively. The results for different values of
η are indicated. (c) Averaged transverse electric current (top
panel) and spin (bottom panel) versus the incident relative en-
ergy η.

To understand the physical mechanism of robust Dirac
WGMs, we analyze the relativistic quantum behaviors of a
particle in a 2D step junction system with metal-insulator
(MI) and insulator-metal (IM) configurations formed by a
spatial-dependent mass potential, as shown in Fig. 3(a).
The insulator region can be created experimentally with
a finite constant mass potential M = M0 (since we only
consider the lowest few levels), while the metal region with
zero band gap hosts massless Dirac fermions. An incoming
plane wave |ki〉 from the metal to the insulator regions
with the incident angle θ and energy E = v|k| inside the
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mass gap |M0| > E is reflected to state |kr〉, together with
an evanescent state |kt〉 in the insulator region. Solving
the Dirac equation together with the boundary conditions
(Appendix), we obtain the associated local charge current
density and spin orientation as

jx = 0, (8)

jy = v
4τ cos2 γ

tanβ
× exp (−2qx),

and

Sx =
2τ cos2 γ

tanβ
× exp (−2qx), (9)

Sy = 0,

Sz =
cos2 γ

sin2 β
cos (2β)× exp (−2qx),

where

tanβ = |(vq + E sin θ0)/(M0 + E)| ,
tan γ = (1− τ tanβ sin θ0)/(τ tanβ cos θ0),

τ = sgn(M0q),

vq = ±
√
M2

0 − (E cos θ0)2,

with the ± signs denoting the propagating directions of
the incident wave from the metal region (corresponding
to the MI and IM configurations, respectively). We see
that spin is perpendicular to the current direction, which
is responsible for the strong spin-orbit coupling associated
with the surface states of 3D TIs. The transverse current
jy and the constrained spin orientation (Sx, Sz) are both
functions of the relative incident energy ratio η = E/M0

and the incident angle θ0 with respect to the x-axis. An
interesting feature is that the signs of jy and Sx are sim-
ply determined by those of mass M0 and q. Restricting
our consideration to M0 > 0, we see that both jy and
Sx are anti-symmetric with respect to the transformation
of q → −q, θ0 → θ0 + π. As a result, jy and Sx are
positive/negative for the MI/IM junction, leading to per-
sistent positive/negative transverse current and left/right
spin polarization at the junction interfaces when all pos-
sible incident angles are taken into account. This is the
situation where there are transverse Hall currents without
external magnetic fields, and the directions of the cur-
rents can be controlled by changing the configuration of
the junction. More physical insights into these peculiar
currents can be gained by considering the case of hard
wall confinement: η � 1. At the interface, we have

jy → 2v(τ + sin θ0),

Sx → (τ + sin θ0),

Sz → 0.

That is, the spin becomes fully in-plane polarized (← or
→), as shown in Fig. 3(b). Averaging over all the incident

angles θ0 ∈ [−π/2, π/2] for MI ([π/2, 3π/2] for IM), we
obtain

〈jy〉 =
1

π
lim
η→0

∫ π/2

−π/2
dθ0jy(η, θ0) = 2vτ, (10)

and

〈Sx〉 =
1

π
lim
η→0

∫ π/2

−π/2
dθ0sx(η, θ0) = τ. (11)

As shown in Fig. 3(c), both average values are half of their 250

maximum values in magnitude but the currents and spins 251

are opposite in direction for the MI and IM configurations. 252

Decoherence. For a quantum two-level system to be
practically useful, the dephasing time τϕ and the relax-
ation time τr need to be much larger than the Rabi period
(operation time scale) τop = 4π/∆. Our relativistic quan-
tum states are spin polarized WGMs, so they are less sen-
sitive to nonmagnetic perturbations, such as electrostatic
fluctuations, than those based on conventional split-gate
electrodes [53]. At low temperatures kBT � ∆, decoher-
ence mainly comes from the measurement process. We use
the standard spin-boson model (SBM) to calculate the de-
coherence time caused by the coupling to the measurement
device (e.g., a superconducting quantum interference de-
vice - SQUID), which has been used to assess decoherence
in flux based, nonrelativistic quantum systems of meso-
scopic semiconducting [54] or superconducting rings [55].
For a system at the bath temperature T , the energy re-
laxation time is

τ−1r = 0.5J
(µ
~

)
coth

(
µ

2kBT

)
sin2 Ω, (12)

and the phase-decoherence time is

τ−1ϕ =
τ−1r

2
+ 2πξkBT cos2 Ω/~, (13)

where the level spacing is µ =
√
ε̃2 + ∆2, Ω = tan−1(∆/µ)

is the mixing angle, J(ω) is a spectral density function
characterizing the environment, and the dimensionless dis-
sipation parameter is defined as

ξ = lim
ω→0

J(ω)/2πω. (14)

For µ� kBT and assuming that the environment can be
treated as an Ohmic bath [i.e., J(ω) ∝ ω], we have

τ−1r ' πξµ sin2 Ω/~, (15)

with the damping parameter given by

ξ ' (2π/~)(MI/Φ0)2I2sq tan2 [f(L2
J/Rl)kBT ], (16)

whereM is the mutual inductance coefficient between the
two-level system and the measuring SQUID, I and Isq are
the respective circulating currents. The SQUID is effec-
tively an inductor of inductance

LJ = (~/2e)/
√

4I2c cos2 f − I2sq (17)
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and is driven by a magnetic flux f with the flux-tunable253

critical current Ic. The quantity Rl is used to model the254

real part of the impedance resulting from non-ideal wirings255

to the SQUID. Adopting the same parameters for the mea-256

suring device as in Ref. [56], we obtain τr ∼ 45 ns and257

τϕ ∼ 59 ns at 300 mK for our Dirac ring of size ∼ 100 nm.258

In realistic situations the Ohmic environment assumption259

cannot adequately describe all sources of decoherence, but260

these estimates provide a meaningful assessment of the261

system operation. In particular, level spacing in our sys-262

tem sets the operation time to be τop ∼ 4 ps, which is much263

less than τϕ. The corresponding quantum quality factor264

can thus be quite large: on the order of 104, suggesting265

strongly that our two-level system can be tested experi-266

mentally and potentially useful for applications [57,58].267

Conclusions. We conclude by presenting a potential ex-268

perimental scheme to realize our robust relativistic two-269

level system. The key lies in the implementation of mass270

confinement, which can be accomplished using graphene or271

3D TIs. For example, a controllable mass term can be cre-272

ated by depositing a ferromagnetic insulator (FMI) layer273

on the surface of a 3D TI [27]. Differing from graphene,274

the surface states of a 3D TI host Dirac fermions origi-275

nated from a single Dirac cone, which is the case treated in276

this work. One possible scheme based on 3D TIs (Bi2Se3,277

PbxSn1−xTe) is sketched in Fig. 1(a), where the mate-278

rial EuS (GdN or Cr2Ge2Te6) can be used for the FMI279

cap layer and patterned to generate a ring geometry. Sys-280

tem readout can be realized by measuring the sign of the281

flux generated by the circulating currents, using a sepa-282

rate SQUID magnetometer inductively coupled to the sys-283

tem. In practice, the current scanning SQUID technique284

allows one to filter the applied controlling flux from the285

one induced by the quantum states [59]. Two or more286

such system can also be coupled by means of the induced287

flux, making it possible to develop gates or even a net-288

work of Dirac two-level system. We emphasize the sur-289

prising feature of our two-level system: during various290

stages of the fabrication process boundary imperfections291

and/or bulk disorders are inevitable, but they are counter-292

intuitively beneficial for our system because they provide293

the necessary coupling between the two oppositely circu-294

lating boundary states. A key merit of our proposal lies295

in its relativistic quantum nature, due to the strong cur-296

rent interest in Dirac materials and their unconventional297

electronic properties.298
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Appendix: Derivation of Eq. (8) and Eq. (9). –
Imposing the continuity of the waves at the junction

interface x = 0 [Fig. 3(a)], i.e.

|ki〉+R|kr〉 = T |kt〉, (18)

we obtain the undetermined coefficients

R = exp [i(2γ + θ0 − π/2)], (19)

and

T =
2 cos γ

τ sinβ
exp [i(γ + θ0/2)], (20)

with the auxiliary parameters β and γ satisfying

tanβ =

∣∣∣∣vq + E sin θ0
M0 + E

∣∣∣∣ ,
and

tan γ =
1− τ tanβ sin θ0
τ tanβ cos θ0

,

where τ = sgn(M0q), vq = ±
√
M2

0 − (E cos θ0)2 with the
sign ± denoting the propagating directions of the incident
wave from the metal region and hence corresponding to the
MI/IM configurations, respectively. The wavefunction in
the insulator region can thus be expressed explicitly as

ψt = 〈r|kt〉 =
T√
2

(
−i cosβ
τ sinβ

)
exp(−qx)× ei

E sin θ0
v y.

(21)
The associated local charge current density and spin ori- 302

entation are determined by the corresponding definitions 303

j = vψ†σ̂ψ and S = ψ†Ŝψ, leading to Eqs. (8) and (9). 304
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