26,135 research outputs found

    Electrohydrodynamic jet printing of PZT thick film micro-scale structures

    Get PDF
    This paper reports the use of a printing technique, called electrohydrodynamic jet printing, for producing PZT thick film micro-scale structures without additional material removing processes. The PZT powder was ball-milled and the effect of milling time on the particle size was examined. This ball-milling process can significantly reduce the PZT particle size and help to prepare stable composite slurry suitable for the E-Jet printing. The PZT micro-scale structures with different features were produced. The PZT lines with different widths and separations were fabricated through the control of the E-Jet printing parameters. The widths of the PZT lines were varied from 80 μm to 200 μm and the separations were changed from 5 μm to 200 μm. In addition, PZT walled structures were obtained by multi-layer E-Jet printing. The E-Jet printed PZT thick films exhibited a relative permittivity (ɛr) of ∼233 and a piezoelectric constant (d33, f) of ∼66 pC N−1

    Superconducting properties of ultrathin Bi2Sr2CaCu2O8+x single crystals

    Full text link
    We use Ar-ion milling to thin Bi2212 single crystals down to a few nanometers or one-to-two (CuO2)2 layers. With decreasing the thickness, superconducting transition temperature gradually decreases to zero and the in-plane resistivity increases to large values indicating the existence of a superconductor-insulator transition in ultrathin Bi2212 single crystals.Comment: 17 pages, 6 figures, to appear in J. Appl. Phys. 98(3) 200

    Adaptive Fuzzy Game-based Energy Efficient Localization in 3D Underwater Sensor Networks

    Get PDF
    Numerous applications in 3D underwater sensor networks (UWSNs), such as pollution detection, disaster prevention, animal monitoring, navigation assistance, and submarines tracking, heavily rely on accurate localization techniques. However, due to the limited batteries of sensor nodes and the di!culty for energy harvesting in UWSNs, it is challenging to localize sensor nodes successfully within a short sensor node lifetime in an unspeci"ed underwater environment. Therefore, we propose the Adaptive Energy-E!cient Localization Algorithm (Adaptive EELA) to enable energy-e!cient node localization while adapting to the dynamic environment changes. Adaptive EELA takes a fuzzy game-theoretic approach, whereby Stackelberg game is used to model the interactions among sensor and anchor nodes in UWSNs and employs the adaptive neuro-fuzzy method to set the appropriate utility functions. We prove that a socially optimal Stackelberg–Nash Equilibrium is achieved in Adaptive EELA. Through extensive numerical simulations under various environmental scenarios, the evaluation results show that our proposed algorithm accomplishes a signi"cant energy reduction, e.g., 66% lower compared to baselines, while achieving a desired performance level in terms of localization coverage, error, and delay

    Hertz-level Measurement of the 40Ca+ 4s 2S1/2-3d 2D5/2 Clock Transition Frequency With Respect to the SI Second through GPS

    Full text link
    We report a frequency measurement of the clock transition of a single ^40Ca^+ ion trapped and laser cooled in a miniature ring Paul trap with 10^-15 level uncertainty. In the measurement, we used an optical frequency comb referenced to a Hydrogen maser, which was calibrated to the SI second through the Global Positioning System (GPS). Two rounds of measurements were taken in May and June 2011, respectively. The frequency was measured to be 411 042 129 776 393.0(1.6) Hz with a fractional uncertainty of 3.9{\times}10^-15 in a total averaging time of > 2{\times}10^6 s within 32 days

    On the Convergence of Kergin and Hakopian Interpolants at Leja Sequences for the Disk

    Full text link
    We prove that Kergin interpolation polynomials and Hakopian interpolation polynomials at the points of a Leja sequence for the unit disk DD of a sufficiently smooth function ff in a neighbourhood of DD converge uniformly to ff on DD. Moreover, when ff is CC^\infty on DD, all the derivatives of the interpolation polynomials converge uniformly to the corresponding derivatives of ff

    Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats

    Get PDF
    Gut microbiota play a vital role in maintaining the health of the host. Many factors affect gut microbiota; application of broad range antibiotics disturb microbiota, while probiotic application protects the microbiota. To investigate how probiotics alter the physiological and psychological changes induced by antibiotics, we tested the performance of ampicillin-treated rats in the presence or absence of Lactobacillus fermentum strain NS9, in elevated plus maze and Morris water maze. The results showed that NS9 normalised the composition of gut microbiota and alleviated the ampicillin-induced inflammation in the colon. The levels of the mineralocorticoid and N-methyl-D-aspartate receptors were also elevated in the hippocampus of the ampillicin+ NS9 treated group. NS9 administration also reduced the anxiety-like behaviour and alleviated the ampicillin-induced impairment in memory retention. These findings suggest that NS9 is beneficial to the host, because it restores the physiological and psychological abnormalities induced by ampicillin. Our results highlight how gut contents regulate the brain, and shed light on the clinical applications of probiotics to treat the side effect of antibiotics and mental disorders
    corecore