46,619 research outputs found

    Non-leptonic two-body weak decays of Λc(2286)\Lambda_c(2286)

    Full text link
    We study the non-leptonic two-body weak decays of Λc+(2286)BnM\Lambda_c^+(2286)\to {\bf B}_n M with Bn{\bf B}_n (MM) representing as the baryon (meson) states. Based on the SU(3)SU(3) flavor symmetry, we can describe most of the data reexamined by the BESIII Collaboration with higher precisions. However, our result of B(Λc+pπ0)=(5.6±1.5)×104{\cal B}(\Lambda_c^+ \to p\pi^0)=(5.6\pm 1.5)\times 10^{-4} is larger than the current experimental limit of 3×1043\times10^{-4} (90\% C.L.) by BESIII. In addition, we find that B(Λc+Σ+K0)=(8.0±1.6)×104{\cal B}(\Lambda_c^+ \to \Sigma^+ K^0)=(8.0\pm 1.6)\times 10^{-4}, B(Λc+Σ+η)=(1.00.8+1.6)×102{\cal B}(\Lambda_c^+ \to \Sigma^+ \eta^\prime)=(1.0^{+1.6}_{-0.8})\times 10^{-2}, and B(Λc+pη)=(12.28.7+14.3)×104{\cal B}(\Lambda_c^+ \to p \eta^\prime)=(12.2^{+14.3}_{-\,\,\,8.7})\times 10^{-4}, which are accessible to the BESIII experiments.Comment: 12 pages, 1 figure, revised version accepted by PL

    Two ultracold atoms in a completely anisotropic trap

    Full text link
    As a limiting case of ultracold atoms trapped in deep optical lattices, we consider two interacting atoms trapped in a general anisotropic harmonic oscillator potential, and obtain exact solutions of the Schrodinger equation for this system. The energy spectra for different geometries of the trapping potential are compared.Comment: 4 pages, 2 figure

    On particle acceleration and trapping by Poynting flux dominated flows

    Full text link
    Using particle-in-cell (PIC) simulations, we study the evolution of a strongly magnetized plasma slab propagating into a finite density ambient medium. Like previous work, we find that the slab breaks into discrete magnetic pulses. The subsequent evolution is consistent with diamagnetic relativistic pulse acceleration of \cite{liangetal2003}. Unlike previous work, we use the actual electron to proton mass ratio and focus on understanding trapping vs. transmission of the ambient plasma by the pulses and on the particle acceleration spectra. We find that the accelerated electron distribution internal to the slab develops a double-power law. We predict that emission from reflected/trapped external electrons will peak after that of the internal electrons. We also find that the thin discrete pulses trap ambient electrons but allow protons to pass through, resulting in less drag on the pulse than in the case of trapping of both species. Poynting flux dominated scenarios have been proposed as the driver of relativistic outflows and particle acceleration in the most powerful astrophysical jets.Comment: 25 pages, Accepted by Plasma Physics and Controlled Fusio

    Sectoral r modes and periodic RV variations of Sun-like stars

    Get PDF
    Radial velocity (RV) measurements are used to search for planets orbiting late-type main-sequence stars and confirm the transiting planets. The most advanced spectrometers are approaching a precision of 10\sim 10 cm/s that implies the need to identify and correct for all possible sources of RV oscillations intrinsic to the star down to this level and possibly beyond. The recent discovery of global-scale equatorial Rossby waves in the Sun, also called r modes, prompted us to investigate their possible signature in stellar RV measurements. R modes are toroidal modes of oscillation whose restoring force is the Coriolis force and propagate in the retrograde direction in a frame that corotates with the star. The solar r modes with azimuthal orders 3m153 \leq m \lesssim 15 were identified unambiguously because of their dispersion relation and their long e-folding lifetimes of hundreds of days. Here we simulate the RV oscillations produced by sectoral r modes with 2m52 \leq m \leq 5 assuming a stellar rotation period of 25.54 days and a maximum amplitude of the surface velocity of each mode of 2 m/s. This amplitude is representative of the solar measurements, except for the m=2m=2 mode which has not yet been observed. Sectoral r modes with azimuthal orders m=2m=2 and 33 would produce RV oscillations with amplitudes of 76.4 and 19.6 cm/s and periods of 19.16 and 10.22 days, respectively, for a star with an inclination of the rotation axis i=60i=60^{\circ}. Therefore, they may produce rather sharp peaks in the Fourier spectrum of the radial velocity time series that could lead to spurious planetary detections. Sectoral r~modes may represent a source of confusion in the case of slowly rotating inactive stars that are preferential targets for RV planet search. The main limitation of the present investigation is the lack of observational constraint on the amplitude of the m=2m=2 mode on the Sun.Comment: 7 pages; 4 figures; 1 table; accepted to Astronomy & Astrophysic

    Multiphoton entanglement through a Bell multiport beam splitter

    Full text link
    Multiphoton entanglement is an important resource for linear optics quantum computing. Here we show that a wide range of highly entangled multiphoton states, including W-states, can be prepared by interfering single photons inside a Bell multiport beam splitter and using postselection. A successful state preparation is indicated by the collection of one photon per output port. An advantage of the Bell multiport beam splitter is that it redirects the photons without changing their inner degrees of freedom. The described setup can therefore be used to generate polarisation, time-bin and frequency multiphoton entanglement, even when using only a single photon source.Comment: 8 pages, 2 figures, carefully revised version, references adde

    Validating foundry technologies for extended mission profiles

    Get PDF
    This paper presents a process qualification and characterization strategy that can extend the foundry process reliability potential to meet specific automotive mission profile requirements. In this case study, data and analyses are provided that lead to sufficient confidence for pushing the allowed mission profile envelope of a process towards more aggressive (automotive) applications.\ud \u

    A holistic multimodal approach to the non-invasive analysis of watercolour paintings

    Get PDF
    A holistic approach using non-invasive multimodal imaging and spectroscopic techniques to study the materials (pigments, drawing materials and paper) and painting techniques of watercolour paintings is presented. The non-invasive imaging and spectroscopic techniques include VIS-NIR reflectance spectroscopy and multispectral imaging, micro-Raman spectroscopy, X-ray fluorescence spectroscopy (XRF) and optical coherence tomography (OCT). The three spectroscopic techniques complement each other in pigment identification. Multispectral imaging (near infrared bands), OCT and micro-Raman complement each other in the visualisation and identification of the drawing material. OCT probes the microstructure and light scattering properties of the substrate while XRF detects the elemental composition that indicates the sizing methods and the filler content . The multiple techniques were applied in a study of forty six 19th century Chinese export watercolours from the Victoria & Albert Museum (V&A) and the Royal Horticultural Society (RHS) to examine to what extent the non-invasive analysis techniques employed complement each other and how much useful information about the paintings can be extracted to address art conservation and history questions
    corecore