29,744 research outputs found

    Multiwavelength Observations of GX 339-4 in 1996. II. Rapid X-ray Variability

    Get PDF
    As part of our multiwavelength campaign of GX 339-4 observations in 1996 we present the rapid X-ray variability observed July 26 using the RXTE when the source was in a hard state (= soft X-ray low state). We found that the source was extremely variable, with many bright flares. The flares have relatively symmetric time profiles. There are a few time intervals where the flux rises steadily and then drops suddenly, sometimes to a level lower than the average before the increase. Hardness ratios showed that the source was slightly softer when the flux was brighter. The power density spectra (PDS) were also complicated and we found that broken power laws do not provide adequate fits to any of them. Instead a pair of zero-centered Lorentzians gives a good general description of the shape of the PDS. We found several quasi-periodic oscillations (QPO), including some that are harmonically spaced with the most stable frequency at 0.35 Hz. While the overall rms variability of the source was close to being constant throughout the observation (29% integrating between 0.01 and 50 Hz), there is a small but significant change in the PDS shape with time. More importantly, we show that the soft 2-5 keV band is more variable than the harder 5-10 and 10-40 keV bands, which is unusual for this source and for other black hole candidates. Cross correlation functions (CCF) between these bands show that the light curve for the 10-40 keV band lags that of the 2-5 keV band by 5 msec.Comment: Submitted to Astrophysical Journal. 20 pages. 8 figure

    No Evidence for Orbital Loop Currents in Charge Ordered YBa2_2Cu3_3O6+x_{6+x} from Polarized Neutron Diffraction

    Get PDF
    It has been proposed that the pseudogap state of underdoped cuprate superconductors may be due to a transition to a phase which has circulating currents within each unit cell. Here, we use polarized neutron diffraction to search for the corresponding orbital moments in two samples of underdoped YBa2_2Cu3_3O6+x_{6+x} with doping levels p=0.104p=0.104 and 0.123. In contrast to some other reports using polarized neutrons, but in agreement with nuclear magnetic resonance and muon spin rotation measurements, we find no evidence for the appearance of magnetic order below 300 K. Thus, our experiment suggests that such order is not an intrinsic property of high-quality cuprate superconductor single crystals. Our results provide an upper bound for a possible orbital loop moment which depends on the pattern of currents within the unit cell. For example, for the CC-θII\theta_{II} pattern proposed by Varma, we find that the ordered moment per current loop is less than 0.013 μB\mu_B for p=0.104p=0.104.Comment: Comments in arXiv:1710.08173v1 fully addresse

    Analyses of the Konus catalogue of gamma-ray bursts with the thermal synchrotron model

    Get PDF
    Approximately 150 reported gamma bursts of the Konus catalogue using the thermal synchrotron model are analyzed. An overwhelming majority of these spectra can be satsifactorily fitted by theoretical thermal synchrotron spectra of mildly relativistic electrons in strong magnetic fields, making the strong-field neutron star picture at least self-consistent. Valuable additional information is also extracted from various spectral features contained in many of the events

    A Peculiar Flaring Episode of Cygnus X-1

    Full text link
    Recent monitoring of Cyg X-1 with {\em RXTE} revealed a period of intense flaring, which started in October of 2000 and lasted until March of 2001. The source exhibited some quite unusual behaviors during this period. The soft X-ray flux of the source went up and down three times on a timescale of about one month, as discovered by the ASM aboard RXTE, before finally returning to the normal level (of the hard state). The observed spectral and temporal X-ray properties of Cyg X-1 are mostly intermediate between the canonical hard and soft states. This is known previously for strong X-ray flares, however, we show that the source did enter a period that resembles, in many ways, a sustained soft state during the last of the three flares. We make detailed comparisons between this flare and the 1996 state transition, in terms of the observed X-ray properties, such as flux--hardness correlation, X-ray spectrum, and power density spectrum. We point out the similarities and differences, and discuss possible implications of the results on our understanding of the phenomena of flares and state transitions associated with Cyg X-1.Comment: 4 pages, 3 figures, accepted for publication in ApJ Letter

    Semiclassical Analysis of the Wigner 12j12j Symbol with One Small Angular Momentum

    Full text link
    We derive an asymptotic formula for the Wigner 12j12j symbol, in the limit of one small and 11 large angular momenta. There are two kinds of asymptotic formulas for the 12j12j symbol with one small angular momentum. We present the first kind of formula in this paper. Our derivation relies on the techniques developed in the semiclassical analysis of the Wigner 9j9j symbol [L. Yu and R. G. Littlejohn, Phys. Rev. A 83, 052114 (2011)], where we used a gauge-invariant form of the multicomponent WKB wave-functions to derive asymptotic formulas for the 9j9j symbol with small and large angular momenta. When applying the same technique to the 12j12j symbol in this paper, we find that the spinor is diagonalized in the direction of an intermediate angular momentum. In addition, we find that the geometry of the derived asymptotic formula for the 12j12j symbol is expressed in terms of the vector diagram for a 9j9j symbol. This illustrates a general geometric connection between asymptotic limits of the various 3nj3nj symbols. This work contributes the first known asymptotic formula for the 12j12j symbol to the quantum theory of angular momentum, and serves as a basis for finding asymptotic formulas for the Wigner 15j15j symbol with two small angular momenta.Comment: 15 pages, 14 figure

    Optimum spectral window for imaging of art with optical coherence tomography

    Get PDF
    Optical Coherence Tomography (OCT) has been shown to have potential for important applications in the field of art conservation and archaeology due to its ability to image subsurface microstructures non-invasively. However, its depth of penetration in painted objects is limited due to the strong scattering properties of artists’ paints. VIS-NIR (400 nm – 2400 nm) reflectance spectra of a wide variety of paints made with historic artists’ pigments have been measured. The best spectral window with which to use optical coherence tomography (OCT) for the imaging of subsurface structure of paintings was found to be around 2.2 μm. The same spectral window would also be most suitable for direct infrared imaging of preparatory sketches under the paint layers. The reflectance spectra from a large sample of chemically verified pigments provide information on the spectral transparency of historic artists’ pigments/paints as well as a reference set of spectra for pigment identification. The results of the paper suggest that broadband sources at ~2 microns are highly desirable for OCT applications in art and potentially material science in general

    Glueballs and Instantons

    Get PDF
    We study correlation functions and Bethe Salpeter amplitudes for the scalar, the pseudoscalar and the tensor glueballs using an instanton-based model of the QCD vacuum. We consider both the pure gauge case and the situation for real QCD with two light quark flavors. We show that instantons lead to a strong modification of the correlation functions as compared to their perturbative behavior. In particular, we find a strong attractive force in the JCP=0++J^{CP}=0^{++} channel and repulsion in the 0+−0^{+-} channel. Due to the strong classical field of the instantons, these effects are much larger than the spin splittings observed in mesons made of quarks. The resulting masses, coupling constants and wave functions appear to be in agreement with lattice gauge simulations.Comment: revised version published in Phys. Rev. Let

    Two-dimensional gapless spin liquids in frustrated SU(N) quantum magnets

    Full text link
    A class of the symmetrically frustrated SU(N) models is constructed for quantum magnets based on the generators of SU(N) group. The total Hamiltonian lacks SU(N) symmtry. A mean field theory in the quasi-particle representation is developed for spin liquid states. Numerical solutions in two dimension indicate that the ground states are gapless and the quasi-particles are Dirac particles. The mechanism may be helpful in exploring the spin liquid phases in the spin-1 bilinear-biquadratic model and the spin-orbital model in higher dimensions.Comment: 9 pages, 3 figures, to appear in New Journal of Physic
    • …
    corecore