567 research outputs found

    Time Sequential Single-Cell Patterning with High Efficiency and High Density

    No full text
    Single-cell capture plays an important role in single-cell manipulation and analysis. This paper presents a microfluidic device for deterministic single-cell trapping based on the hydrodynamic trapping mechanism. The device is composed of an S-shaped loop channel and thousands of aligned trap units. This arrayed structure enables each row of the device to be treated equally and independently, as it has row periodicity. A theoretical model was established and a simulation was conducted to optimize the key geometric parameters, and the performance was evaluated by conducting experiments on MCF-7 and Jurkat cells. The results showed improvements in single-cell trapping ability, including loading efficiency, capture speed, and the density of the patterned cells. The optimized device can achieve a capture efficiency of up to 100% and single-cell capture efficiency of up to 95%. This device offers 200 trap units in an area of 1 mm2, which enables 100 single cells to be observed simultaneously using a microscope with a 20× objective lens. One thousand cells can be trapped sequentially within 2 min; this is faster than the values obtained with previously reported devices. Furthermore, the cells can also be recovered by reversely infusing solutions. The structure can be easily extended to a large scale, and a patterned array with 32,000 trap sites was accomplished on a single chip. This device can be a powerful tool for high-throughput single-cell analysis, cell heterogeneity investigation, and drug screening

    Altered Cerebral Blood Flow in the Progression of Chronic Kidney Disease

    No full text
    Background: In chronic kidney disease (CKD), cognitive impairment is a definite complication. However, the mechanisms of how CKD leads to cognitive impairment are not clearly known. Methods: Cerebral blood flow (CBF) information was collected from 37 patients with CKD (18 in stage 3; 19 in stage 4) and 31 healthy controls (HCs). For CKD patients, we also obtained laboratory results as well as neuropsychological tests. We conducted brain perfusion imaging studies using arterial spin labeling and calculated the relationship between regional CBF changes and various clinical indicators and neuropsychological tests. We also generated receiver operator characteristic (ROC) curves to explore whether CBF value changes in certain brain regions can be used to identify CKD. Results: Compared with HCs, CBF decreased in the right insula and increased in the left hippocampus in the CKD4 group; through partial correlation analysis, we found that CBF in the right insula was negatively correlated with the number connection test A (NCT-A) (r = −0.544, p = 0.024); CBF in the left hippocampus was positively correlated with blood urea nitrogen (r = 0.649, p = 0.005) and negatively correlated with serum calcium level (r = −0.646, p = 0.005). By comparing the ROC curve area, it demonstrated that altered CBF values in the right insula (AUC = 0.861, p p < 0.01) have a good ability to identify CKD. Conclusions: Our study found that CBF alterations in the left hippocampus and the right insula brain of adult patients with stage 4 CKD were correlated with disease severity or laboratory indicators. These findings provide further insight into the relationship between altered cerebral perfusion and cognitive impairment in patients with non-end-stage CKD as well as, additional information the underlying neuropathophysiological mechanisms

    The SALT—Readout ASIC for Silicon Strip Sensors of Upstream Tracker in the Upgraded LHCb Experiment

    No full text
    SALT, a new dedicated readout Application Specific Integrated Circuit (ASIC) for the Upstream Tracker, a new silicon detector in the Large Hadron Collider beauty (LHCb) experiment, has been designed and developed. It is a 128-channel chip using an innovative architecture comprising a low-power analogue front-end with fast pulse shaping and a 40 MSps 6-bit Analog-to-Digital Converter (ADC) in each channel, followed by a Digital Signal Processing (DSP) block performing pedestal and Mean Common Mode (MCM) subtraction and zero suppression. The prototypes of SALT were fabricated and tested, confirming the full chip functionality and fulfilling the specifications. A signal-to-noise ratio of about 20 is achieved for a silicon sensor with a 12 pF input capacitance. In this paper, the SALT architecture and measurements of the chip performance are presented

    Measurement of the inelastic pppp cross-section at a centre-of-mass energy of 13 TeV

    No full text
    The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13 TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum p > 2 GeV/c in the pseudorapidity range 2 < η < 5 is determined to be σacc_{acc} = 62.2 ± 0.2 ± 2.5 mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section σinel_{inel} = 75.4 ± 3.0 ± 4.5 mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7 TeV is also reported
    • …
    corecore