68 research outputs found

    An aptamer-based sensing platform for luteinising hormone pulsatility measurement

    Get PDF
    Normal fertility in human involves highly orchestrated communication across the hypothalamic-pituitary-gonadal (HPG) axis. The pulsatile release of Luteinising Hormone (LH) is a critical element for downstream regulation of sex steroid hormone synthesis and the production of mature eggs. Changes in LH pulsatile pattern have been linked to hypothalamic dysfunction, resulting in multiple reproductive and growth disorders including Polycystic Ovary Syndrome (PCOS), Hypothalamic Amenorrhea (HA), and delayed/precocious puberty. Therefore, assessing the pulsatility of LH is important not only for academic investigation of infertility, but also for clinical decisions and monitoring of treatment. However, there is currently no clinically available tool for measuring human LH pulsatility. The immunoassay system is expensive and requires large volumes of patient blood, limiting its application for LH pulsatility monitoring. In this thesis, I propose a novel method using aptamer-enabled sensing technology to develop a device platform to measure LH pulsatility. I first generated a novel aptamer binding molecule against LH by a nitrocellulose membrane-based in vitro selection then characterised its high affinity and specific binding properties by multiple biophysical/chemical methods. I then developed a sensitive electrochemical-based detection method using this aptamer. The principal mechanism is that structure switching upon binding is associated with the electron transfer rate changes of the MB redox label. I then customised this assay to numerous device platforms under our rapid prototyping strategy including 96 well automated platform, continuous sensing platform and chip-based multiple electrode platform. The best-performing device was found to be the AELECAP (Automated ELEctroChemical Aptamer Platform) – a 96-well plate based automatic micro-wire sensing platform capable of measuring a series of low volume luteinising hormone within a short time. Clinical samples were evaluated using AELECAP. A series of clinical samples were measured including LH pulsatility profile of menopause female (high LH amplitude), normal female/male (normal LH amplitude) and female with hypothalamic amenorrhea (no LH pulsatility). Total patient numbers were 12 of each type, with 50 blood samples collected every 10 mins in 8 hours. Results showed that the system can distinguish LH pulsatile pattern among the cohorts and pulsatility profiles were consistent with the result measured by clinical assays. AELECAP shows high potential as a novel approach for clinical aptamer-based sensing. AELECAP competes with current automated immunometric assays system with lower costs, lower reagent use, and a simpler setup. There is potential for this approach to be further developed as a tool for infertility research and to assist clinicians in personalised treatment with hormonal therapy.Open Acces

    A Novel Energy-Efficient Approach for Human Activity Recognition

    Get PDF
    In this paper, we propose a novel energy-efficient approach for mobile activity recognition system (ARS) to detect human activities. The proposed energy-efficient ARS, using low sampling rates, can achieve high recognition accuracy and low energy consumption. A novel classifier that integrates hierarchical support vector machine and context-based classification (HSVMCC) is presented to achieve a high accuracy of activity recognition when the sampling rate is less than the activity frequency, i.e., the Nyquist sampling theorem is not satisfied. We tested the proposed energy-efficient approach with the data collected from 20 volunteers (14 males and six females) and the average recognition accuracy of around 96.0% was achieved. Results show that using a low sampling rate of 1Hz can save 17.3% and 59.6% of energy compared with the sampling rates of 5 Hz and 50 Hz. The proposed low sampling rate approach can greatly reduce the power consumption while maintaining high activity recognition accuracy. The composition of power consumption in online ARS is also investigated in this paper

    Identification of a major QTL and candidate genes analysis for branch angle in rapeseed (Brassica napus L.) using QTL-seq and RNA-seq

    Get PDF
    IntroductionBranching angle is an essential trait in determining the planting density of rapeseed (Brassica napus L.) and hence the yield per unit area. However, the mechanism of branching angle formation in rapeseed is not well understood.MethodsIn this study, two rapeseed germplasm with extreme branching angles were used to construct an F2 segregating population; then bulked segregant analysis sequencing (BSA-seq) and quantitative trait loci (QTL) mapping were utilized to localize branching anglerelated loci and combined with transcriptome sequencing (RNA-seq) and quantitative real-time PCR (qPCR) for candidate gene miningResults and discussionA branching angle-associated quantitative trait loci (QTL) was mapped on chromosome C3 (C3: 1.54-2.65 Mb) by combining BSA-seq as well as traditional QTL mapping. A total of 54 genes had SNP/Indel variants within the QTL interval were identified. Further, RNA-seq of the two parents revealed that 12 of the 54 genes were differentially expressed between the two parents. Finally, we further validated the differentially expressed genes using qPCR and found that six of them presented consistent differential expression in all small branching angle samples and large branching angles, and thus were considered as candidate genes related to branching angles in rapeseed. Our results introduce new candidate genes for the regulation of branching angle formation in rapeseed, and provide an important reference for the subsequent exploration of its formation mechanism

    Efficient Photocatalytic Water Reduction Using In Situ Generated Knölker's Iron Complexes

    Get PDF
    Inâ situ generated ironâ based Knölker complexes were found to be efficient catalysts in a fully nonâ noble metal Cuâ Fe photocatalytic water reduction system. These mononuclear iron catalysts were able to generate hydrogen up to 15 times faster than previously reported [Fe3(CO)12]. A reductive quenching mechanism was shown to operate by fluorescence experiments.Photo finish: Inâ situ generated ironâ based Knölker complexes are efficient catalysts in a fully nonâ noble metal Cuâ Fe photocatalytic water reduction system. These mononuclear iron catalysts generate hydrogen up to 15 times faster than previously reported [Fe3(CO)12]. A reductive quenching mechanism is shown to operate by fluorescence experiments. CuPS=copper(I) photosensitizer; SR=sacrificial reductant.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137356/1/cctc201600186.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137356/2/cctc201600186_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137356/3/cctc201600186-sup-0001-misc_information.pd

    Measuring luteinising hormone pulsatility with a robotic aptamer-enabled electrochemical reader

    Get PDF
    Assessment of luteinising hormone pulsatility is important in the diagnosis of reproductive disorders. Here the authors develop a DNA aptamer-based electrochemical analysis integrated into a robotic platform for high-throughput and sensitive analysis

    Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite

    Full text link
    As China's first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was designed to perform pointing, scanning and gamma-ray burst (GRB) observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed. Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech. Astron. arXiv admin note: text overlap with arXiv:1910.0443

    Insight-HXMT observations of Swift J0243.6+6124 during its 2017-2018 outburst

    Full text link
    The recently discovered neutron star transient Swift J0243.6+6124 has been monitored by {\it the Hard X-ray Modulation Telescope} ({\it Insight-\rm HXMT). Based on the obtained data, we investigate the broadband spectrum of the source throughout the outburst. We estimate the broadband flux of the source and search for possible cyclotron line in the broadband spectrum. No evidence of line-like features is, however, found up to 150 keV\rm 150~keV. In the absence of any cyclotron line in its energy spectrum, we estimate the magnetic field of the source based on the observed spin evolution of the neutron star by applying two accretion torque models. In both cases, we get consistent results with B∼1013 GB\rm \sim 10^{13}~G, D∼6 kpcD\rm \sim 6~kpc and peak luminosity of >1039 erg s−1\rm >10^{39}~erg~s^{-1} which makes the source the first Galactic ultraluminous X-ray source hosting a neutron star.Comment: publishe
    • …
    corecore