5,392 research outputs found

    Editorial: Technology for Higher Education, Adult Learning and Professional Development

    Get PDF
    The basis of competition has shifted more towards the assimilation and creation of knowledge in the fiercely competitive and evolving digital age. Learning has therefore become crucial for sustainable development and innovation across individual, organizational, and community levels. Papers in this special issue are representative of ongoing research on integration of technology with learning and knowledge management in higher education institutions and organizational and community environments.published_or_final_versio

    Carbonated Drinks Impact Follicle Development, Expression of Ovarian FSHR and Serum Caspase-3 in Mice

    Get PDF
    Objectives: The present study aimed to assess the effects of Coca-Cola and Pepsi-Cola on the development of ovaries and follicles, and on the reproduction of animals

    Isolation and characteristic of an aerobic denitrifier with high nitrogen removal efficiency

    Get PDF
    Paracoccus denitrificans DL-23, isolated from aerobic domesticated activated sludge, was demonstrated to have high ability of denitrification and heterotrophic nitrification under aerobic condition. After optimization (succinate, COD/N 10, 37°C, 160 rpm), DL-23 removed 420 and 860 mg/l NO3--N within 36 to 60 h of growth, respectively. DL-23 also removed 380 mg/l NH4+-N within 24 h with ammonia as nitrogen source. The maximum removal rate was 30.3 mg/l·h. Meanwhile, DL-23 exhibited aerobic nitrite reduction ability with 658 mg/l NO2--N within 48 h.Key words: Aerobic denitrification, heterotrophic nitrification, nitrogen removal, Paracoccus denitrificans

    Structural basis for oligomerization and glycosaminoglycan binding of CCL5 and CCL3.

    Get PDF
    CC chemokine ligand 5 (CCL5) and CCL3 are critical for immune surveillance and inflammation. Consequently, they are linked to the pathogenesis of many inflammatory conditions and are therapeutic targets. Oligomerization and glycosaminoglycan (GAG) binding of CCL5 and CCL3 are vital for the functions of these chemokines. Our structural and biophysical analyses of human CCL5 reveal that CCL5 oligomerization is a polymerization process in which CCL5 forms rod-shaped, double-helical oligomers. This CCL5 structure explains mutational data and offers a unified mechanism for CCL3, CCL4, and CCL5 assembly into high-molecular-weight, polydisperse oligomers. A conserved, positively charged BBXB motif is key for the binding of CC chemokines to GAG. However, this motif is partially buried when CCL3, CCL4, and CCL5 are oligomerized; thus, the mechanism by which GAG binds these chemokine oligomers has been elusive. Our structures of GAG-bound CCL5 and CCL3 oligomers reveal that these chemokine oligomers have distinct GAG-binding mechanisms. The CCL5 oligomer uses another positively charged and fully exposed motif, KKWVR, in GAG binding. However, residues from two partially buried BBXB motifs along with other residues combine to form a GAG-binding groove in the CCL3 oligomer. The N termini of CC chemokines are shown to be involved in receptor binding and oligomerization. We also report an alternative CCL3 oligomer structure that reveals how conformational changes in CCL3 N termini profoundly alter its surface properties and dimer-dimer interactions to affect GAG binding and oligomerization. Such complexity in oligomerization and GAG binding enables intricate, physiologically relevant regulation of CC chemokine functions

    X-ray fluorescence mapping of mercury on suspended mineral particles and diatoms in a contaminated freshwater system

    Get PDF
    Mercury (Hg) bioavailability and geochemical cycling is affected by its partitioning between the aqueous and particulate phases. We applied a synchrotron-based X-ray fluorescence (XRF) microprobe to visualize and quantify directly the spatial localization of Hg and its correlations with other elements of interest on suspended particles from a Hg-contaminated freshwater system. Up to 175 μg g⁻¹ Hg is found on suspended particles, but less than 0.01% is in the form of methylmercury. Mercury is heterogeneously distributed among phytoplankton (e.g., diatoms) and mineral particles that are rich in iron oxides and natural organic matter (NOM). The diatom-bound Hg is mostly found on outer surfaces of the cells, suggesting passive sorption of Hg on diatoms. Our results indicate that localized sorption of Hg onto suspended particles, including diatoms and NOM-coated oxide minerals, may play an important role in affecting the partitioning, reactivity, and biogeochemical cycling of Hg in natural aquatic environments

    Pyrite-type ruthenium disulfide with tunable disorder and defects enables ultra-efficient overall water splitting

    Full text link
    The exploration of efficient electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is significant for water splitting associated with the storage of clean and renewable energy. Here, we report a simple and scalable low-temperature sulfuration method to achieve simultaneous modulation of disorder and defects in pyrite-type RuS2 nanoparticles to dramatically enhance the HER and OER catalytic activity. The disordered structure can increase the electrochemically active surface area, while defect engineering can effectively regulate the electronic structure and thus improve the intrinsic activity, as revealed by combined experimental and theoretical density functional theory (DFT) investigations. Through controllable disorder and defect engineering, the optimized RuS2-500 catalyst (with a sulfuration temperature of 500 °C) supported on a glassy carbon electrode exhibits ultra-efficient bifunctional electrocatalytic activity with η-10 = 78 mV for the HER and η10 = 282 mV for the OER, superior to various Ru-based and pyrite-type catalysts. Remarkably, when used as both the anode and the cathode in an alkaline water electrolyzer, RuS2-500 delivers 10 mA cm-2 at an ultralow cell voltage of 1.527 V with long-term stability, outperforming the benchmark Pt/C//RuO2 couple and most state-of-the-art overall-water-splitting electrocatalysts ever reported. This work thus provides a new and facile way for improving the catalytic activity through a synergistic modulation strategy
    corecore