10,183 research outputs found

    Studies on X(4260) and X(4660) particles

    Full text link
    Studies on the X(4260) and X(4660) resonant states in an effective lagrangian approach are reviewed. Using a Breit--Wigner propagator to describe their propagation, we find that the X(4260) has a sizable coupling to the ωχc0\omega\chi_{c0} channel, while other couplings are found to be negligible. Besides, it couples much stronger to σ\sigma than to f0(980)f_0(980): gXΨσ2/gXΨf0(980)2O(10) .|g_{X\Psi \sigma}^2/g^2_{X\Psi f_0(980)}|\sim O(10) \ . As an approximate result for X(4660), we obtain that the ratio of Br(XΛc+Λc)Br(XΨ(2s)π+π)20\frac{Br(X\rightarrow\Lambda_c^+\Lambda_c^-)}{Br(X\rightarrow\Psi(2s)\pi^+\pi^-)}\simeq 20. Finally, taking X(3872) as an example, we also point out a possible way to extend the previous method to a more general one in the effective lagrangian approach.Comment: Talk given by H. Q. Zheng at "Xth Quark Confinement and the Hadron Spectrum", October 8-12, 2012, TUM Campus Garching, Munich, Germany. 6 pages, 3 figures, 3 table

    Poboljšana metoda prekida razvoja i nova rješenja opće KdV jednadžbe s promjenljivim koeficijentima

    Get PDF
    In this paper, by using a new special function transform and truncated expansion method, three kinds of exact solutions of the general variable-coefficient KdV equation have been obtained. The solutions are general and they contain some exact analytical solutions, which have been given in other papersU ovom radu, primjenom posebnih pretvorbi funkcija i prekidom razvoja, postigli smo tri egzaktna rješenja opće KdV jednadžbe s varijabilnim koeficijentima. Postignuta rješenja su općenita i sadrže neka poznata analitička rješenja u drugim radovima

    Minimal sets determining universal and phase-covariant quantum cloning

    Full text link
    We study the minimal input sets which can determine completely the universal and the phase-covariant quantum cloning machines. We find that the universal quantum cloning machine, which can copy arbitrary input qubit equally well, however can be determined completely by only four input states located at the four vertices of a tetrahedron. The phase-covariant quantum cloning machine, which can copy all qubits located on the equator of the Bloch sphere, can be determined by three equatorial qubits with equal angular distance. These results sharpen further the well-known results that BB84 states and six-states used in quantum cryptography can determine completely the phase-covariant and universal quantum cloning machines. This concludes the study of the power of universal and phase-covariant quantum cloning, i.e., from minimal input sets necessarily to full input sets by definition. This can simplify dramatically the testing of whether the quantum clone machines are successful or not, we only need to check that the minimal input sets can be cloned optimally.Comment: 7 pages, 4 figure

    Quantum Cloning Machines and the Applications

    Full text link
    No-cloning theorem is fundamental for quantum mechanics and for quantum information science that states an unknown quantum state cannot be cloned perfectly. However, we can try to clone a quantum state approximately with the optimal fidelity, or instead, we can try to clone it perfectly with the largest probability. Thus various quantum cloning machines have been designed for different quantum information protocols. Specifically, quantum cloning machines can be designed to analyze the security of quantum key distribution protocols such as BB84 protocol, six-state protocol, B92 protocol and their generalizations. Some well-known quantum cloning machines include universal quantum cloning machine, phase-covariant cloning machine, the asymmetric quantum cloning machine and the probabilistic quantum cloning machine etc. In the past years, much progress has been made in studying quantum cloning machines and their applications and implementations, both theoretically and experimentally. In this review, we will give a complete description of those important developments about quantum cloning and some related topics. On the other hand, this review is self-consistent, and in particular, we try to present some detailed formulations so that further study can be taken based on those results.Comment: 98 pages, 12 figures, 400+ references. Physics Reports (published online

    Demonstration of Geometric Landau-Zener Interferometry in a Superconducting Qubit

    Get PDF
    Geometric quantum manipulation and Landau-Zener interferometry have been separately explored in many quantum systems. In this Letter, we combine these two approaches to study the dynamics of a superconducting phase qubit. We experimentally demonstrate Landau-Zener interferometry based on the pure geometric phases in this solid-state qubit. We observe the interference caused by a pure geometric phase accumulated in the evolution between two consecutive Landau-Zener transitions, while the dynamical phase is canceled out by a spin-echo pulse. The full controllability of the qubit state as a function of the intrinsically robust geometric phase provides a promising approach for quantum state manipulation.Comment: 5 pages + 3 pages supplemental Materia

    No-compressing of quantum phase information

    Full text link
    We raise a general question of quantum information theory whether the quantum phase information can be compressed and retrieved. A general qubit contains both amplitude and phase information, while an equatorial qubit contains only a phase information. We study whether it is possible to compress the phase information of n equatorial qubits into m general qubits with m being less than n, and still those information can be retrieved perfectly. We prove that this process is not allowed by quantum mechanics.Comment: 4 pages, 1 figur

    Radio sources with ultra-high polarization

    Get PDF
    A sample of 129 unresolved radio sources with ultrahigh linear polarization (>30 per cent) has been selected from the NRAO VLA Sky Survey. Such high average linear polarization is unusual in extragalactic sources. Higher resolution Australia Telescope Compact Array and Very Large Array observations confirm the high average polarization but find that most of these sources are extended. The Sloan Digital Sky Survey spectroscopy, where available, shows that the optical counterparts are elliptical galaxies with no detectable emission lines. The optical spectra, radio luminosity, linear size and spectral index of these sources are typical of radio-loud active galactic nuclei. Galaxy counts within a 1 Mpc radius of the radio sources show that these highly polarized sources are in environments similar to their low polarization (<2 per cent) counterparts. Similarly, the line-of-sight environments of the ultrahigh polarization sources are on average indistinguishable from those of the low-polarization sources. We conclude that the extraordinarily high average polarization must be due to intrinsic properties of the sources, such as an extremely ordered source magnetic field, low internal thermal plasma density or a preferential orientation of the source magnetic field perpendicular to the line of sight.Comment: 23 pages, 15 figures, 6 tables, accepted for publication in MNRAS; v2: some typos correcte

    Unified Universal Quantum Cloning Machine and Fidelities

    Full text link
    We present a unified universal quantum cloning machine, which combines several different existing universal cloning machines together including the asymmetric case. In this unified framework, the identical pure states are projected equally into each copy initially constituted by input and one half of the maximally entangled states. We show explicitly that the output states of those universal cloning machines are the same. One importance of this unified cloning machine is that the cloning procession is always the symmetric projection which reduces dramatically the difficulties for implementation. Also it is found that this unified cloning machine can be directly modified to the general asymmetric case. Besides the global fidelity and the single-copy fidelity, we also present all possible arbitrary-copy fidelities.Comment: 4 pages, 2 figure
    corecore