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Geometric quantum manipulation and Landau-Zener interferometry have been separately explored in
many quantum systems. In this Letter, we combine these two approaches to study the dynamics of a super-
conducting phase qubit. We experimentally demonstrate Landau-Zener interferometry based on the pure
geometric phases in this solid-state qubit. We observe the interference caused by a pure geometric phase
accumulated in the evolution between two consecutive Landau-Zener transitions, while the dynamical
phase is canceled out by a spin-echo pulse. The full controllability of the qubit state as a function of
the intrinsically robust geometric phase provides a promising approach for quantum state manipulation.
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Solid-state devices based on superconducting Josephson
junctions present an excellent platform for exploring quan-
tum mechanics and hold promise for applications in quan-
tum information processing [1]. Great successes have been
achieved in demonstrating the quantum coherent nature of
these artificial atoms [2–18]. However, in order to realize
practical quantum computation, much research is still
needed to find the optimal balance between controllability
and decoherence.
A promising approach to achieve robust control of a

quantum system is by using geometric phases which arise
from a cyclic evolution of the quantum system [19–27].
These geometric phases have been observed in a wide vari-
ety of systems including superconducting qubits [27–29].
In particular, the robustness of geometric phases against
certain noises [30,31] has been confirmed in a recent
experiment based on a superconducting qubit [32]. One
of the most promising applications of geometric phases
on quantum control is geometric quantum computation.
The design of fault-tolerant quantum logic gates is the
central issue in realizing quantum computation. The phases
in a quantum gate are usually a combination of geometric
phases and dynamical phases. The performances of these
two types of phases are essentially different: in contrast
to dynamical phases which are sensitive to the rate of pas-
sage, geometric phases depend solely on the global geom-
etry of the trajectory traversed by the state of the system.
Because geometric phases are immune to certain local fluc-
tuations, it was proposed that quantum gates with purely
geometric phases, which are called geometric quantum
gates [20,21], are intrinsically fault tolerant [22–25].
Interestingly, high-fidelity geometric quantum gates have
been experimentally realized by several groups [26,27].
On the other hand, the Landau-Zener (LZ) transition

(LZT) has been demonstrated to be another important
approach to control a quantum system [33–38]. When a

quantum two-level system is driven through an avoided
energy-level crossing, the system can undergo nonadiabatic
transitions with the LZT probability

PLZ ¼ expð−πΔ2=2ℏvÞ; (1)

whereΔ is the energy gap at the avoided crossing andv is the
speed of energy variation [33]. Quantum interference and
manipulationsofqubit statesbasedon thisphenomenonhave
been reported in different quantum systems [33–38].
However, in these studies, the dynamical phases dominate
the entire evolution. In otherwords, while LZ interferometry
and geometric quantummanipulation are bothwell explored
in many quantum systems, they have not been jointly exam-
ined in detail. In a recent interesting Letter [39], the manipu-
lation of geometric phases with LZT in a superconducting
charge qubit was theoretically proposed; however, no exper-
imental observation has been reported so far.
In this Letter, we fill this gap by reporting an experiment

that combines the LZT and geometric phase manipulation.
We design and experimentally realize LZ interferometry
with pure geometric phases in a superconducting phase
qubit. Since the dynamics of a superconducting qubit
coupled to microwave fields is analogous to the dynamics
of a spin-1=2 particle subjected to a rotating magnetic field,
all kinds of geometric phases may accumulate in a designed
evolution [19]. We observe the oscillations of the excited
state population versus the geometric phase, which is an
ubiquitous signature of quantum interferences. Our numeri-
cal simulation results using the measured energy relaxation
and phase decoherence times agree well with the experi-
mental data, confirming the observation of the geometric
LZ interference. Furthermore, the observed contrast of
LZ interferences with pure geometric phases is higher than
that of dynamical LZ interferences, which shows the
robustness of the geometric LZ interferometry (GLZI).
Since LZ interferences have been proposed to have many
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applications in various quantum systems [33], the demon-
strated GLZI in our experiment paves a new way to achieve
reliable control of qubit states. Therefore, our work should
shed light on and stimulate interests in applying LZ inter-
ferometry for quantum state control in general and fault-
tolerant quantum information processing in particular.
The system used to demonstrate GLZI is a flux-biased

superconducting phase qubit. The truncated Hamiltonian
of the lowest two levels (j0i, j1i) in the energy bases is
Hq ¼ 1

2
ℏωσz [38,40], where σz is the Pauli operator in

the z direction (see the Supplemental Material [41]). ℏω
denotes the energy difference between j0i and j1i, which
could be tuned by varying the external magnetic flux ϕex
threading the loop, as illustrated in Fig. 1(a). Moreover, the
state of the qubit can be controlled by microwave (MW)
irradiation. With a MW field, the Hamiltonian becomes
H0 ¼ 1

2
ℏωσz þ ℏΩ cosðωmtþ θÞσx, where Ω is the Rabi

frequency proportional to the amplitude of the MW, ωm
(θ) is the frequency (phase) of the MW. With respect to
the frame rotating with frequency ωm, we apply the rotating
wave approximation to obtain

HB ¼ 1

2
ℏδσz þ

1

2
ℏΩxσx þ

1

2
ℏΩyσy ≡ ℏB⃗ ·

σ⃗

2
; (2)

where δ ¼ ω − ωm is the detuning, Ωx ¼ Ω cos θ, and
Ωy ¼ Ω sin θ. The dynamics of the qubit is thus identical

to that of a spin-1=2 particle subjected to an effective mag-
netic field B⃗ ¼ ðΩx;Ωy; δÞ. Therefore, the geometric
phases may accumulate in a designed evolution [19].
The Hamiltonian HB is essentially identical to that in

Ref. [39] and can therefore be used to realize GLZI.
In the following, we briefly summarize GLZI proposed
in Ref. [39] and our modifications for implementation in
a superconducting phase qubit. In the original proposal
in Ref. [39], the dynamical phase was not removed. Our
method improved upon this by eliminating both the
dynamical phase and the Stokes phase based on a spin-echo
method, which was used to remove dynamical phases in
geometric quantum computation [21,23]. To illustrate
our scheme, we plot the effective magnetic fields in
Fig. 1(b), where the trajectory along ABCDOPA is consid-
ered in Ref. [39] and the path along ABCDJKA is studied
here. In Fig. 1(c), we plot the energies of the adiabatic states
jgi, jei as a function of time in a GLZI, obtained by instan-
taneous diagonalization of HB. The LZTs occur at the
avoided level crossings at time t ¼ τ1, τ2. The probability
of a nonadiabatic LZT at such a crossing is given approx-
imately by Eq. (1), where Δ ¼ Ω and v ¼ ℏðω1 − ω2Þ=τp,
with τp being the LZ sweeping time defined here as the
time swept from point S to point F in Fig. 1(a). Here,
ω1 (ω2) is the energy level spacing at point S (F).
Comparing our Figs. 1(b),(c) with Figs. 1 (b),(c) in
Ref. [39], we make two modifications. One is that the tra-
jectory of effective field is now a rectangle. The other modi-
fication, which is a substantial improvement, is the use of a
spin echo at time τs to remove the dynamical phase [42] as
well as to make the evolution between two LZs a closed
path. To illustrate the latter point, we plot the evolution path
ngj ¼ hψgjσjjψgi (j ¼ x, y, z) with initial ground state
jψgðt ¼ τ1Þ between two LZTs on the Bloch sphere in
Fig. 1(d) under the condition of adiabatic approximation.
The path L1DL0 is for the trajectory studied in
Ref. [39], where the geometric phase is θ determined by
the spherical triangle L1DL0. On the other hand, the trajec-
tory of ngj considered here is along the closed path
L1DGAL1 in Fig. 1(d). The trajectory L1D of the evolution
follows the magnetic field L1CD in Fig. 1(b). The spin
echo leads the Bloch vector to evolve alone DGA, and
finally the Bloch vector evolves along AL1 (as an excited
state) when the magnetic field moves along DJL2 in
Fig. 1(b). Therefore, the geometric phase accumulated
between the two LZ transitions is also θ determined by
the trajectory L1DGAL1 in Fig. 1(d).
Following the adiabatic-impulse method outlined in

Refs. [33,34,39], we obtain the population on the excited
state after the entire evolution,

P1 ¼ 1 − 4PLZð1 − PLZÞ sin2θ: (3)

It is clear from Eq. (3) that P1 is independent of the dynami-
cal phase and hence insensitive to fluctuations in qubit

FIG. 1 (color online). (a) The qubit eigenenergies (solid lines)
E0;1 (with respect to ground state energy E0) versus flux bias.
Aneffectiveavoidedcrossing (dashed lines) related toHB is created
at pointM by the MW with frequency ωm. (b) Effective magnetic
fields. The trajectory along ABCDJKA (ABCDOPA) is considered
in this Letter (Ref. [39]). (c) The corresponding instantaneous ei-
genvalues of HB versus time and flux bias. The qubit is initially
in the ground state jψgi ¼ j0i, which splits at time t ¼ τ1 during
the first LZT, evolving along two different paths and interfering
at time t ¼ τ2 of the second LZT. At point F, the state is flipped
byaπ pulse toeliminate thedynamical phase. (d)TheBlochvectors
of the qubit in the GLZI considered in Ref. [39] and here.

PRL 112, 027001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

17 JANUARY 2014

027001-2



transition frequency ωðtÞ ¼ E1ðtÞ − E0ðtÞ. Furthermore,
comparing with that in Ref. [39], we find that the interefer-
ence pattern resulting from our method is independent of
the Stokes phase [43]. Therefore, our GLZI scheme should
be more robust against various harmful dynamical effects.
We use a trilayer Al=AlOx=Al superconducting phase

qubit fabricated on crystalline Al2O3 substrate to imple-
ment our scheme experimentally. Figure 2(a) shows the
principle circuitry of the qubit and its measurement. The
qubit is cooled to 30 mK in a dilution refrigerator. We mea-
sure the energy relaxation time T1 and decoherence time T2

of the qubit using the standard pump probe and spin echo,
respectively [40], and the results are T1 ¼ 118� 3 and
T2 ¼ 157� 11 ns [41].
Figure 2(b) shows the temporal profile of the flux bias and

MW fields utilized to realize GLZI. In our experiment, the
energy level spacing at points S and F are 14.4 and
14.2 GHz, respectively [Fig. 1(a)]. The frequency of MW1,
which creates the avoided crossing, is 14.3 GHz. The size of
the energy gap Ω at the avoided crossing can be tuned by
adjusting the amplitude of MW1 [44]. We control the
Hamiltonian HB along a closed loop in the field B⃗
[Fig. 2(b)]. The z component of the field is controlled by
the flux bias, and Ωx and Ωy are controlled using an IQ
mixer by adjusting the voltage level applied to the I and
Q channels of the mixer. At t ¼ τs, we use MW2 to apply
a π pulse to the qubit, which causes the qubit to evolve along
the path DGA in Fig. 1(d). The pulse width is only several
nanoseconds, which is much smaller than τp, so it is reason-
able to approximate it by an instant π pulse in our numerical
simulation. The θ angle in Fig. 1(b) and Fig. 1(d) is
determined by the ratio between the in-phase and quadrature
components of the microwave. Finally, after the second
LZT is completed, a short readout pulse is applied to make
a projective measurement of the qubit state.

Figure 3 shows population P1 as a function of the geo-
metric phase and the LZ sweeping time τp. As expected
from Eq. (3), population P1 is observed to oscillate sinus-
oidally as a function of the geometric phase. However, as
shown in Fig. 3(a), the amplitude of the observed oscilla-
tion is substantially smaller than that predicted by Eq. (3).
We noticed that some approximations, such as the adia-
batic-impulse approximation and the asymptotic value of
PLZ given by Eq. (1), are applied to obtain Eq. (3), whereas
the decoherence and energy relaxation are not considered.
To confirm that the observed oscillation is indeed caused by
the geometric phase of the system, in the following we first
discuss in which regime our experiment is performed. Since
HB is cyclic with a period around τC ∼ 100 ns, which is
defined as the time spent traversing the cyclic path
SMFMS, we may consider that the qubit is actually driven
by an ac field with frequency ωC=2π ¼ 1=τC ∼ 10 MHz.
Thus our experiment is in the region of Δ=ωC ∼ 2, whereas
the previous experiments that investigated LZTs are in the
limits of ωC ≫ Δ [35] or ωC ≪ Δ [36]. In addition, to
verify the validity of those approximations used in
Eq. (3), we numerically solve the Schrödinger equation
with the Hamiltonian (2), and the result is shown as the
red dotted line in Fig. 3(a). Comparing this line with
the black dashed line obtained from the analytical
expression given by Eq. (3) with PLZ ≃ 0.61 [which is

FIG. 2 (color online). (a) Schematic circuit of the phase qubit
and its experimental setup. The crosses in the dashed box re-
present Josephson junctions. Magnetic flux bias line, microwave,
readout control lines, and dc superconducting quantum interfer-
ence device (SQUID) are inductively coupled to the qubit. An in-
phase and quadrature (IQ) mixer is used to control the X and Y
components of MW1. (b) Schematics of the temporal profile of
waveforms used to perform GLZI. An avoided crossing is created
at point M by MW1 [lower panel: blue or dark gray (red or light
gray) line for the X (Y) component]. MW2 produces the π pulse at
t ¼ τs to null out the dynamical phase. The symbols S, M, and F
correspond to those in Fig. 1(a).

FIG. 3 (color online). (a) Population P1 versus geometric phase
with τp ¼ 25 ns and τC ¼ 100 ns. Green dots are experimental
data, while the black dashed line, the red dotted line, and the
blue solid line are theoretical results obtained from Eq. (3), by
numerically solving the Schrödinger equation and the master
equation (4) with decoherence T1 ¼ 118 ns and T2 ¼ 157 ns,
respectively. The color scale represents (b) measured P1,

and (c) simulated P1 with the master equation versus geometric
phase and LZ period time τp for τC ¼ 100 ns. (d) Measured
population P1 versus time τC for τp ¼ 25 ns in dynamical LZ
interferometry. The solid line is the numerical simulation
of the master equation. Other parameters: Δ=2π¼Ω=2π¼
20MHz and δ=2π ¼ 100 MHz.
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derived by Eq. (1) for the parameters Δ=2π ¼ 20 MHz,
ðω1 − ω2Þ=2π ¼ 200 MHz and τp ¼ 25 ns], the difference
around θ ¼ nπ with n an integer is negligible. On the other
hand, around θ ¼ ðnþ 1=2Þπ the difference between the
numerical and analytical results is relatively larger. To
understand and resolve this apparent discrepancy, we plot
the time evolution of population P1 in Fig. S4 in the
Supplemental Material [41] by numerically solving the
Schrödinger equation for the cases of θ ¼ 0 and
θ ¼ π=2, respectively. Population P1 saturates after the first
LZT, which is a clear-cut signature that the adiabatic-
impulse model is valid under the experimental conditions.
However, the saturation value P0

LZ ≃ 0.71 is not equal to
PLZ ≃ 0.61 as directly derived from Eq. (1). After we
use P0

LZ to replace PLZ in Eq. (3), we obtain a line which
is almost identical to the red dotted line in Fig. 3(a).
Therefore, we confirm that for our experiment, the
adiabatic-impulse model is valid; however, the PLZ in
Eq. (1) should be modified under the experimental
conditions.
Now the question is why the oscillation amplitude of the

experimental result is significantly smaller than that of the
numerical (analytical) results while they have the same
oscillatory dependence of P1 on the geometric phase θ.
As demonstrated below, the quantitative discrepancy
between the experiment and calculations is due to energy
relaxation and decoherence. Because T1 and T2 of the qubit
are comparable to τC, the effect of qubit decoherence can-
not be ignored. In order to have a meaningful comparison
between experiment and theory, we take the effects of finite
T1 and T2 into consideration by numerically solving the
master equation. The quantum dynamics of the system is
thus described by the master equation of the time evolution
of the density matrix ρ,

ρ
: ¼ − i

ℏ
½HB; ρ� − Γ½ρ�; (4)

where the system Hamiltonian HB is given by Eq. (2),
and the second term, Γ½ρ�, describes the relaxation
and dephasing processes phenomenologically. In a
concrete expression, Eq. (4) can be rewritten as ρ

:
11 ¼−i½ðΩ=2Þðe−iθρ01 − eiθρ10Þ� − Γ1ρ11; ρ

:
10 ¼ −i½ðδ=2Þρ10þ

ðΩ=2Þe−iθðρ00 − ρ11Þ� − γρ10, ρ
:
00 ¼ −ρ: 11 with ρ01 ¼ ρ⋆10,

Γ1 ≡ 1=T1, and γ ≡ 1=T2.
The result obtained by solving the master equation with-

out decoherence is identical to that obtained by numerically
solving the Schrödinger equation. Furthermore, the simu-
lated result using the measured qubit T1 ¼ 118 ns and
T2 ¼ 157 ns, shown as the blue solid line in Fig. 3(a),
agrees fairly well with the experimental data. In addition,
from Eq. (1), we know that by adjusting the sweeping speed
of the flux bias v ¼ ℏðω1 − ω2Þ=τp, one could change the
transition probability PLZ. However, since the geometric
phase does not depend on PLZ, the period and phase of
P1ðθÞ oscillation should be insensitive to changes in v

[Fig. 3(c)]. In Fig. 3(b), we show the measured P1ðθÞ oscil-
lation for the different LZ sweeping time τp, which agrees
quite well with the numerical results. Moreover, unlike the
LZ interference of accumulated dynamical phases, P1 does
not oscillate with τp, indicating that the dynamical phase is
well eliminated by the spin-echo pulse.
Finally, we compare the performance of the geometric

LZ interference with that of the conventional dynamical
LZ interference. The measured P1 as a function of the
cyclic time τC for τp ¼ 25 ns is shown in Fig. 3(d). For
dynamical LZ interferometry, the temporal profiles of
the flux bias and MW fields are the same as those depicted
in Fig. 2(c), except that no π pulse is applied at point F. The
phase angle θ of the microwave is kept constant, while τC is
varied by changing the time spent in the plateau part of
Fig. 2(c). Contrary to that of the geometric LZ interference,
P1 oscillates notably when τC is varied. More importantly,
for the similar range of time τC ∼ 100 ns, the contrast
(defined as the difference between the maximum and the
minimum amplitudes of the oscillation) of the dynamical
LZ interference is about 0.16, which is much weaker than
the corresponding value of 0.4 for the geometric LZ inter-
ference. Because 4PLZð1 − PLZÞ [33] is also the theoretical
prediction for the contrast of dynamical LZ interferences,
this result demonstrates that the geometric phase is more
robust and stable against a variety of error-causing dynami-
cal processes such as those caused by microscopic two-
level systems coupled to the qubit [38,45].
In summary, we have experimentally demonstrated GLZI

in a superconducting qubit. Our results indicate that GLZI
may have advantages in many applications involving quan-
tum state manipulation [33] such as simulating the time-
reversal symmetry with LZ interferometry [46]. Since our
geometric LZ approach combines the simplicity of LZ inter-
ferometry and the robustness of geometric phases for quan-
tum state manipulation, it may very well open a new venue
for fault-tolerant quantum information processing.
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