2,826 research outputs found

    Quantitative Analysis of Heroin and its Metabolites in vivo

    Get PDF
    This study investigated heroin and its metabolites in vivo in the rat by using a high-performance liquid chromatography-tandem mass spectrometry (GC-MS) method

    Decreasing erucic acid level by RNAi-mediated silencing of fatty acid elongase 1 (BnFAE1.1) in rapeseeds (Brassica napus L.)

    Get PDF
    The β-ketoacyl CoA synthase encoded by fatty acid elongase 1 gene (BnFAE1.1) is a rate-limiting enzyme regulating biosynthesis of erucic acid in rapeseeds (Brassica napus). To develop low level of erucic acid in rapeseeds by intron-spliced hairpin RNA, an inverted repeat unit of a partial BnFAE1.1 gene interrupted by a spliceable intron was cloned into pCAMBIA3301, and a seed-specific (Napin) promoter was used to control the transcription of the transgene. Four transgenic plants harboring a single copy of transgene were generated. Expression of endogenous BnFAE1.1 gene in developing T3 seeds was significantly reduced. In mature T3 seeds, erucic acid was decreased by 60.8 to 99.1% compared with wild type seeds, and accounted for 0.36 to 15.56% of total fatty acids. The level of eicosenoic acid was also greatly decreased. Furthermore, it resulted in a significant increase in the level of oleic acid, but total fatty acid content in T3 seeds was the same with that in wild type seeds. In conclusion, the expression of endogenous BnFAE1.1 was efficiently silenced by the designed RNAi silencer, causing a significant down-regulation in the level of erucic acid. Therefore, the RNAi-mediated post-transcriptional silencing of FAE1 gene to reduce oleic acid in rapeseeds was an efficient method to breed some new B. napus lines.Key words: Brassica napus L., fatty acid elongase, intron-spliced hairpin RNA, down-regulation, erucic acid

    The 13N(d,n)14O Reaction and the Astrophysical 13N(p,g)14O Reaction Rate

    Full text link
    13^{13}N(p,γp,\gamma)14^{14}O is one of the key reactions in the hot CNO cycle which occurs at stellar temperatures around T9T_9 ≥\geq 0.1. Up to now, some uncertainties still exist for the direct capture component in this reaction, thus an independent measurement is of importance. In present work, the angular distribution of the 13^{13}N(d,nd,n)14^{14}O reaction at Ec.m.E_{\rm{c.m.}} = 8.9 MeV has been measured in inverse kinematics, for the first time. Based on the distorted wave Born approximation (DWBA) analysis, the nuclear asymptotic normalization coefficient (ANC), C1,1/214OC^{^{14}O}_{1,1/2}, for the ground state of 14^{14}O →\to 13^{13}N + pp is derived to be 5.42±0.485.42 \pm 0.48 fm−1/2^{-1/2}. The 13^{13}N(p,γp,\gamma)14^{14}O reaction is analyzed with the R-matrix approach, its astrophysical S-factors and reaction rates at energies of astrophysical relevance are then determined with the ANC. The implications of the present reaction rates on the evolution of novae are then discussed with the reaction network calculations.Comment: 17 pages and 8 figure

    Exact dynamics of interacting qubits in a thermal environment: Results beyond the weak coupling limit

    Full text link
    We demonstrate an exact mapping of a class of models of two interacting qubits in thermal reservoirs to two separate spin-bath problems. Based on this mapping, exact numerical simulations of the qubits dynamics can be performed, beyond the weak system-bath coupling limit. Given the time evolution of the system, we study, in a numerically exact way, the dynamics of entanglement between pair of qubits immersed in boson thermal baths, showing a rich phenomenology, including an intermediate oscillatory behavior, the entanglement sudden birth, sudden death, and revival. We find that stationary entanglement develops between the qubits due to their coupling to a thermal environment, unlike the isolated qubits case in which the entanglement oscillates. We also show that the occurrence of entanglement sudden death in this model depends on the portion of the zero and double excitation states in the subsystem initial state. In the long-time limit, analytic expressions are presented at weak system-bath coupling, for a range of relevant qubit parameters

    Scale-invariant magnetoresistance in a cuprate superconductor

    Full text link
    The anomalous metallic state in high-temperature superconducting cuprates is masked by the onset of superconductivity near a quantum critical point. Use of high magnetic fields to suppress superconductivity has enabled a detailed study of the ground state in these systems. Yet, the direct effect of strong magnetic fields on the metallic behavior at low temperatures is poorly understood, especially near critical doping, x=0.19x=0.19. Here we report a high-field magnetoresistance study of thin films of \LSCO cuprates in close vicinity to critical doping, 0.161≤x≤0.1900.161\leq x\leq0.190. We find that the metallic state exposed by suppressing superconductivity is characterized by a magnetoresistance that is linear in magnetic field up to the highest measured fields of 8080T. The slope of the linear-in-field resistivity is temperature-independent at very high fields. It mirrors the magnitude and doping evolution of the linear-in-temperature resistivity that has been ascribed to Planckian dissipation near a quantum critical point. This establishes true scale-invariant conductivity as the signature of the strange metal state in the high-temperature superconducting cuprates.Comment: 10 pages, 3 figure

    Association of the genetic polymorphisms of the ACE gene and the eNOS gene with lupus nephropathy in northern Chinese population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been reported that some single nucleotide polymorphisms (SNPs) of the angiotensin converting enzyme (<it>ACE</it>) gene and the endothelial nitric oxide synthase (<it>eNOS</it>) gene are associated with the development of systemic lupus erythematosus (SLE) and the progression of nephropathy. The aim of this study was to evaluate the possible association between six SNPs (<it>A-5466C</it>, <it>T-3892C</it>, <it>A-240T</it>, <it>C1237T</it>, <it>G2215A </it>and <it>A2350G</it>) of the <it>ACE </it>gene and two SNPs (<it>T-786C </it>and <it>G894T</it>) of the <it>eNOS </it>gene with lupus nephropathy in a northern Chinese population.</p> <p>Methods</p> <p>In this study, 225 patients with lupus nephropathy were compared to 232 healthy controls, matched by gender, age and ethnicity. Following the extraction of genomic DNA from the leukocytes in the peripheral blood, the genotypes of the eight selected SNPs were determined by the method of PCR-RFLP; the haplotypes were inferred using PHASE 2.1. The associations between the SNPs and the risk of lupus nephropathy were analyzed using Chi-square test and Logistic regression with SPSS13.0 software.</p> <p>Results</p> <p>Statistically significant differences of the allele frequency distribution of three SNPs (<it>A-5466C</it>, <it>A2350G </it>and <it>G894T</it>) were observed between cases and controls (<it>P </it>< 0.05). Among the 53 haplotypes identified, the frequencies of five haplotypes (CTTCGA, ACTTAA, ACATGG, ACACGG and ATTCGA) were significantly different between cases and controls (<it>P </it>< 0.05).</p> <p>Conclusions</p> <p>Our study indicated an association between the risk of lupus nephropathy and the sequence variations of both the <it>ACE </it>gene and the <it>eNOS </it>gene, which may play an important role in the pathogenesis of lupus nephropathy in the northern Chinese population. Further studies are warranted to validate our findings.</p
    • …
    corecore