24 research outputs found

    Saturn Atmospheric Structure and Dynamics

    Full text link
    2 Saturn inhabits a dynamical regime of rapidly rotating, internally heated atmospheres similar to Jupiter. Zonal winds have remained fairly steady since the time of Voyager except in the equatorial zone and slightly stronger winds occur at deeper levels. Eddies supply energy to the jets at a rate somewhat less than on Jupiter and mix potential vorticity near westward jets. Convective clouds exist preferentially in cyclonic shear regions as on Jupiter but also near jets, including major outbreaks near 35°S associated with Saturn electrostatic discharges, and in sporadic giant equatorial storms perhaps generated from frequent events at depth. The implied meridional circulation at and below the visible cloud tops consists of upwelling (downwelling) at cyclonic (anti-cyclonic) shear latitudes. Thermal winds decay upward above the clouds, implying a reversal of the circulation there. Warm-core vortices with associated cyclonic circulations exist at both poles, including surrounding thick high clouds at the south pole. Disequilibrium gas concentrations in the tropical upper troposphere imply rising motion there. The radiative-convective boundary and tropopause occur at higher pressure in the southern (summer) hemisphere due to greater penetration of solar heating there. A temperature “knee ” of warm air below the tropopause, perhaps due to haze heating, is stronger in the summer hemisphere as well. Saturn’s south polar stratosphere is warmer than predicted by radiative models and enhanced in ethane, suggesting subsidence-driven adiabatic warming there. Recent modeling advances suggest that shallow weather laye

    Measurement of CP asymmetries and branching fraction ratios of B− decays to two charm mesons

    Get PDF
    The CPCP asymmetries of seven BB^- decays to two charm mesons are measured using data corresponding to an integrated luminosity of 9fb19\text{fb}^{-1} of proton-proton collisions collected by the LHCb experiment. Decays involving a D0D^{*0} or DsD^{*-}_s meson are analysed by reconstructing only the D0D^0 or DsD^-_s decay products. This paper presents the first measurement of ACP(BDsD0)\mathcal{A}^{CP}(B^- \rightarrow D^{*-}_s D^0) and ACP(BDsD0)\mathcal{A}^{CP}(B^- \rightarrow D^{-}_s D^{*0}), and the most precise measurement of the other five CPCP asymmetries. There is no evidence of CPCP violation in any of the analysed decays. Additionally, two ratios between branching fractions of selected decays are measured.The CP asymmetries of seven B^{−} decays to two charm mesons are measured using data corresponding to an integrated luminosity of 9 fb1^{−1} of proton-proton collisions collected by the LHCb experiment. Decays involving a D0^{*0} or Ds {D}_s^{\ast -} meson are analysed by reconstructing only the D0^{0} or Ds {D}_s^{-} decay products. This paper presents the first measurement of ACP \mathcal{A} ^{CP}(B^{−}Ds {D}_s^{\ast -} D0^{0}) and ACP \mathcal{A} ^{CP}(B^{−}Ds {D}_s^{-} D0^{∗0}), and the most precise measurement of the other five CP asymmetries. There is no evidence of CP violation in any of the analysed decays. Additionally, two ratios between branching fractions of selected decays are measured.[graphic not available: see fulltext]The CPCP asymmetries of seven BB^- decays to two charm mesons are measured using data corresponding to an integrated luminosity of 9 fb19\text{ fb}^{-1} of proton-proton collisions collected by the LHCb experiment. Decays involving a D0D^{*0} or DsD^{*-}_s meson are analysed by reconstructing only the D0D^0 or DsD^-_s decay products. This paper presents the first measurement of ACP(BDsD0)\mathcal{A}^{CP}(B^- \rightarrow D^{*-}_s D^0) and ACP(BDsD0)\mathcal{A}^{CP}(B^- \rightarrow D^{-}_s D^{*0}), and the most precise measurement of the other five CPCP asymmetries. There is no evidence of CPCP violation in any of the analysed decays. Additionally, two ratios between branching fractions of selected decays are measured

    Helium identification with LHCb

    Get PDF
    The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at √(s) = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb-1. A total of around 105 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10^12). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei

    Curvature-bias corrections using a pseudomass method

    Get PDF
    Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy √(s)=13 TeV during 2016, 2017 and 2018. The biases are determined using Z→μ + μ - decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the Z→μ + μ - mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass

    Momentum scale calibration of the LHCb spectrometer

    Get PDF
    For accurate determination of particle masses accurate knowledge of the momentum scale of the detectors is crucial. The procedure used to calibrate the momentum scale of the LHCb spectrometer is described and illustrated using the performance obtained with an integrated luminosity of 1.6 fb-1 collected during 2016 in pp running. The procedure uses large samples of J/ψ → μ + μ - and B+ → J/ψ K + decays and leads to a relative accuracy of 3 × 10-4 on the momentum scale

    Astrophysical SE2 factor of the 12C(α, γ)16O reaction through the 12C(11B, 7Li)16O transfer reaction

    No full text
    The 12C(α, γ)16O reaction plays a key role in the evolution of stars with masses of M > 0.55 M⊙. At the Gamow peak (Ec.m. = 300 ke V, T9 = 0.2), the cross section of the 12C(α, γ)16O reaction is so small (about 10−17 barn) that the direct measurement in ground laboratory is not feasible with the existing technology. Up to now, the cross sections at lower energies can only be extrapolated from the data at higher energies. However, two subthreshold resonances, locating at Ex = 7.117 MeV and Ex = 6.917 MeV, make this extrapolation more complicated. In this work the 6.917 MeV subthreshold resonance in the 12C(α, γ)16O reaction was investigated via the 12C(11B, 7Li)16O reaction. The experiment was performed using the Q3D magnetic spectrograph at HI-13 tandem accelerator. We measured the angular distribution of the 12C(11B, 7Li)16O transfer reaction leading to the 6.917 MeV state. Based on DWBA analysis, we derived the square of ANC of the 6.917 MeV level in 16O to be (2.45± 0.28) ×1010 fm−1, with which the reduced-α width can be computed. Finally, we calculated the astrophysical SE2 factor of the 6.917 MeV resonance to be 67.6 ± 7.7 ke V b
    corecore