46 research outputs found

    Bladder cancer, a unique model to understand cancer immunity and develop immunotherapy approaches

    Get PDF
    International audienceWith the mechanistic understanding of immune checkpoints and success in checkpoint blockade using antibodies for the treatment of certain cancers, immunotherapy has become one of the hottest areas in cancer research, with promise of long-lasting therapeutic effect. Currently, however, only a proportion of cancers have a good response to checkpoint inhibition immunotherapy. Better understanding of the cancer response and resistance mechanisms is essential to fully explore the potential of immunotherapy to cure the majority of cancers. Bladder cancer, one of the most common and aggressive malignant diseases, has been successfully treated both at early and advanced stages by different immunotherapeutic approaches, bacillus Calmette-Guérin (BCG) intravesical instillation and anti-PD-1/PD-L1 immune checkpoint blockade, respectively. Therefore, it provides a good model to investigate cancer immune response mechanisms and to improve the efficiency of immunotherapy. Here, we review bladder cancer immunotherapy with equal weight on BCG and anti-PD-1/PD-L1 therapies and demonstrate why and how bladder cancer can be used as a model to study the predictors and mechanisms of cancer immune response and shine light on further development of immunotherapy approaches and response predictive biomarkers to improve immunotherapy of bladder cancer and other malignancies. We review the success of BCG and anti-PD-1/PD-L1 treatment of bladder cancer, the underlying mechanisms and the therapeutic response predictors, including the limits to our knowledge. We then highlight briefly the adaptation of immunotherapy approaches and predictors developed in other cancers for bladder cancer therapy. Finally, we explore the potential of using bladder cancer as a model to investigate cancer immune response mechanisms and new therapeutic approaches, which may be translated into immunotherapy of other human cancers

    Anti-CTLA4 monoclonal antibodies: the past and the future in clinical application

    Get PDF
    Recently, two studies using ipilimumab, an anti-CTLA-4 monoclonal antibody (mab) demonstrated improvements in overall survival in the treatment of advanced melanoma. These studies utilized two different schedules of treatment in different patient categories (first and second line of treatment). However, the results were quite similar despite of different dosage used and the combination with dacarbazine in the first line treatment. We reviewed the result of randomized phase II-III clinical studies testing anti-CTLA-4 antibodies (ipilimumab and tremelimumab) for the treatment of melanoma to focus on practical or scientific questions related to the broad utilization of these products in the clinics. These analyses raised some considerations about the future of these compounds, their potential application, dosage, the importance of the schedule (induction/manteinance compared to induction alone) and their role as adjuvants. Anti-CTLA-4 antibody therapy represents the start of a new era in the treatment of advanced melanoma but we are on the steep slope of the learning curve toward the optimization of their utilization either a single agents or in combination

    Current and Emerging Treatment Options for Castration-Resistant Prostate Cancer: A Focus on Immunotherapy

    Get PDF
    BACKGROUND: Castration-resistant prostate cancer is a disease with limited treatment options. However, the ongoing elucidation of the mechanisms underlying this disease continues to support the development of not only novel agents, but also innovative approaches. Among these therapies, immunotherapy has emerged as a promising strategy. DESIGN: This review article summarizes the most recent data from investigations of immunotherapies in castration-resistant prostate cancer (literature and congress searches current as of August 2011). RESULTS: Immunotherapeutic strategies such as passive immunization, vaccines, and particularly checkpoint blockade have demonstrated some efficacy as single agents. Elucidation of effective combinations of agents and drug regimens is ongoing but will require continued careful investigation, including the standardization of surrogate endpoints in clinical trials. CONCLUSIONS: It is hypothesized that the combination of immunotherapeutic agents with traditional and novel chemotherapeutics will potentiate the efficacy of the chemotherapeutics while maintaining manageable toxicity

    ICOS regulates the generation and function of human CD4+ Treg in a CTLA-4 dependent manner

    Get PDF
    Inducible co-stimulator (ICOS) is a member of CD28/Cytotoxic T-lymphocyte Antigen-4 (CTLA-4) family and broadly expressed in activated CD4+ T cells and induced regulatory CD4+ T cells (CD4+ iTreg). ICOS-related signal pathway could be activated by the interaction between ICOS and its ligand (ICOSL). In our previous work, we established a cost-effective system to generate a novel human allo-antigen specific CD4hi Treg by co-culturing their naïve precursors with allogeneic CD40-activated B cells in vitro. Here we investigate the role of ICOS in the generation and function of CD4hi Treg by interrupting ICOS-ICOSL interaction with ICOS-Ig. It is found that blockade of ICOS-ICOSL interaction impairs the induction and expansion of CD4hi Treg induced by allogeneic CD40-activated B cells. More importantly, CD4hi Treg induced with the addition of ICOS-Ig exhibits decreased suppressive capacity on alloantigen-specific responses. Dysfunction of CD4hi Treg induced with ICOS-Ig is accompanied with its decreased exocytosis and surface CTLA-4 expression. Through inhibiting endocytosis with E64 and pepstatin A, surface CTLA-4 expression and suppressive functions of induced CD4hi Treg could be partly reversed. Conclusively, our results demonstrate the beneficial role of ICOS-ICOSL signal pathway in the generation and function of CD4hi Treg and uncover a novel relationship between ICOS and CTLA-4. © 2013 zheng et al.published_or_final_versio

    Defining the critical hurdles in cancer immunotherapy

    Get PDF
    Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC), convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators; others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet if overcome, have the potential to improve outcomes of patients with cancer
    corecore