15,190 research outputs found

    Attributed Network Embedding for Learning in a Dynamic Environment

    Full text link
    Network embedding leverages the node proximity manifested to learn a low-dimensional node vector representation for each node in the network. The learned embeddings could advance various learning tasks such as node classification, network clustering, and link prediction. Most, if not all, of the existing works, are overwhelmingly performed in the context of plain and static networks. Nonetheless, in reality, network structure often evolves over time with addition/deletion of links and nodes. Also, a vast majority of real-world networks are associated with a rich set of node attributes, and their attribute values are also naturally changing, with the emerging of new content patterns and the fading of old content patterns. These changing characteristics motivate us to seek an effective embedding representation to capture network and attribute evolving patterns, which is of fundamental importance for learning in a dynamic environment. To our best knowledge, we are the first to tackle this problem with the following two challenges: (1) the inherently correlated network and node attributes could be noisy and incomplete, it necessitates a robust consensus representation to capture their individual properties and correlations; (2) the embedding learning needs to be performed in an online fashion to adapt to the changes accordingly. In this paper, we tackle this problem by proposing a novel dynamic attributed network embedding framework - DANE. In particular, DANE first provides an offline method for a consensus embedding and then leverages matrix perturbation theory to maintain the freshness of the end embedding results in an online manner. We perform extensive experiments on both synthetic and real attributed networks to corroborate the effectiveness and efficiency of the proposed framework.Comment: 10 page

    Baicalein and U0126 suppress bladder cancer proliferation via MAPK signaling pathway

    Get PDF
    Purpose: To investigate baicalein and 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (U0126)effects on human bladder cell line T24 proliferation and related mechanisms.Methods: Twenty micromoles of baicalein or 10 μM U0126 were incubated with T24 cells. Cell viability was tested by CCK8 assay. Cell cycle was evaluated by flow cytometry while cell apoptosis was detected by Annexin V/PI and TUNEL assay. MAPK signaling pathway was evaluated by real time polymerase chain reaction (RT-PCR) and western blot.Results: Baicalein and U0126 suppressed bladder cancer cell T24 proliferation by blocking cell cycle in G0~G1 phase. TUNEL and Annexin V/PI detection showed both baicalein and U0126 induced T24 cell apoptosis. Baicalein and U0126 significantly down-regulated MAPK signaling pathway related molecule activity in both mRNA and protein levels (p < 0.05).Conclusion: Baicalein and U0126 restrain bladder cancer cell proliferation and promote cell apoptosis by affecting MAPK signaling pathway. Thus, they have  potentials for use in the treatment of bladder cancer.Keywords: Bladder cancer, Baicalein, 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene, MAPK signal pathway, Apoptosi

    Statistical Analysis on Large Scale Chinese Short Message Corpus and Automatic Short Massage Error Correction

    Get PDF
    PACLIC / The University of the Philippines Visayas Cebu College Cebu City, Philippines / November 20-22, 200

    Unconventional Flatband Line States in Photonic Lieb Lattices

    Get PDF
    Flatband systems typically host "compact localized states"(CLS) due to destructive interference and macroscopic degeneracy of Bloch wave functions associated with a dispersionless energy band. Using a photonic Lieb lattice(LL), we show that conventional localized flatband states are inherently incomplete, with the missing modes manifested as extended line states which form non-contractible loops winding around the entire lattice. Experimentally, we develop a continuous-wave laser writing technique to establish a finite-sized photonic LL with specially-tailored boundaries, thereby directly observe the unusually extended flatband line states.Such unconventional line states cannot be expressed as a linear combination of the previously observed CLS but rather arise from the nontrivial real-space topology.The robustness of the line states to imperfect excitation conditions is discussed, and their potential applications are illustrated

    MiR-196b-5p regulates the proliferation of drug-resistant hepatocellular carcinoma cell lines by activating NFκB/ABCB1 signaling pathway

    Get PDF
    Purpose: To explore the molecular function of miR-196b-5p in hepatocellular carcinoma (HCC).Methods: MiR-196b-5p expression levels in HCC tissue samples were assessed by qRT-PCR. MiR-196b-5p was knocked-down or over-expressed in HepG2 cells by transfecting the cells with plasmids expressing either a miR-196b-5p inhibitor or mimic, respectively, while cell proliferation was  assessed by MTT assay. The interaction of miR-196b-5p with target molecules was confirmed using luciferase reporter assay. Cell cycle was investigated by flow cytometry, while NFκBIA expression was assessed by western blotting.Results: MiR-196b-5p was over-expressed in HCC, and miR-196b-5p expression levels in patients with HCC were related to tumor grade. MiR-196b-5p over-expression promoted cell proliferation and colony formation and suppressed cell cycle arrest and apoptosis. The results of luciferase reporter assay showed that miR-196b-5p reduced NFκBIA expression in HepG2 cells by binding to a response element in the 3′ UTR of NFκBIA. Further investigation showed that NFκBIA interacts with NFκB1 and reduces the concentration of NFκB1 in HepG2 cells. The promoter of ATP-binding cassette sub-family B member 1 (ABCB1) was also targeted and bound by NFκB1, which altered the expression of ABCB1 in HepG2 cells.Conclusion: MiR-196b-5p regulates cell proliferation in drug-resistant HCC cell lines via activation of the NFκB/ABCB1 signaling pathway. Keywords: Hepatocellular carcinoma, miR-196b-5p, NFκBIA, NFκB1, ABCB

    Temporal Pyramid Network for Pedestrian Trajectory Prediction with Multi-Supervision

    Full text link
    Predicting human motion behavior in a crowd is important for many applications, ranging from the natural navigation of autonomous vehicles to intelligent security systems of video surveillance. All the previous works model and predict the trajectory with a single resolution, which is rather inefficient and difficult to simultaneously exploit the long-range information (e.g., the destination of the trajectory), and the short-range information (e.g., the walking direction and speed at a certain time) of the motion behavior. In this paper, we propose a temporal pyramid network for pedestrian trajectory prediction through a squeeze modulation and a dilation modulation. Our hierarchical framework builds a feature pyramid with increasingly richer temporal information from top to bottom, which can better capture the motion behavior at various tempos. Furthermore, we propose a coarse-to-fine fusion strategy with multi-supervision. By progressively merging the top coarse features of global context to the bottom fine features of rich local context, our method can fully exploit both the long-range and short-range information of the trajectory. Experimental results on several benchmarks demonstrate the superiority of our method.Comment: 9 pages, 5 figure

    Baicalein inhibits the invasion of human cervical cancer cells by inhibiting the hedgehog/Gli signaling pathway

    Get PDF
    Purpose: To identify the role of baicalein in human cervical cancer and to determine whether baicalein treatment affects hedgehog/Gli signaling pathway. Methods: Cell proliferation was evaluated by MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and colony formation assays. Cell death rate was assessed by PI-staining and FACS assay. Furthermore, cell invasion was assessed by Transwell assay while the levels of the key proteins were measured by western blotting analysis. Results: Baicalein suppressed the viability and proliferation of HeLa cells. The colony formation ability and relative migration rate were significantly decreased in the HeLa cells treated with 50 μM baicalein. Furthermore, the levels of Shh, Gli1, MMP-9, and VEGF declined significantly in baicalein-treated cells. Conclusion: The results demonstrate that baicalein inhibits the growth and invasiveness of cervical cancer cells partly by suppressing the activation of hedgehog/Gli signaling pathway in a concentrationdependent manner. Keywords: Cervical cancer, baicalein, hedgehog/Gli pathway, MMP-
    • …
    corecore